BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3558552)

  • 1. Protein conformational effects in hydrophobic interaction chromatography. Retention characterization and the role of mobile phase additives and stationary phase hydrophobicity.
    Wu SL; Figueroa A; Karger BL
    J Chromatogr; 1986 Dec; 371():3-27. PubMed ID: 3558552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal behavior of proteins in high-performance hydrophobic-interaction chromatography. On-line spectroscopic and chromatographic characterization.
    Wu SL; Benedek K; Karger BL
    J Chromatogr; 1986 May; 359():3-17. PubMed ID: 3015998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational effects in the high-performance liquid chromatography of proteins. Further studies of the reversed-phase chromatographic behavior of ribonuclease A.
    Lu XM; Benedek K; Karger BL
    J Chromatogr; 1986 May; 359():19-29. PubMed ID: 3733925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of metal ions on the unfolding kinetics of alpha-lactalbumin on weakly hydrophobic surfaces.
    Lin SW; Oroszlan P; Karger BL
    J Chromatogr; 1991 Jan; 536(1-2):17-30. PubMed ID: 2050763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anion-exchange chromatographic properties of alpha-lactalbumin eluted from quaternized polyvinylimidazole. Study of the role of the polymer coating.
    Lemque R; Vidal-Madjar C; Racine M; Piquion J; Sébille B
    J Chromatogr; 1991 Aug; 553(1-2):165-77. PubMed ID: 1787150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive study to protein retention in hydrophobic interaction chromatography.
    Baca M; De Vos J; Bruylants G; Bartik K; Liu X; Cook K; Eeltink S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Oct; 1032():182-188. PubMed ID: 27237734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational effects in the reversed-phase liquid chromatography of ribonuclease A.
    Cohen SA; Benedek K; Tapuhi Y; Ford JC; Karger BL
    Anal Biochem; 1985 Jan; 144(1):275-84. PubMed ID: 3985322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. True and apparent temperature dependence of protein adsorption equilibrium in reversed-phase HPLC.
    Szabelski P; Cavazzini A; Kaczmarski K; Van Horn J; Guiochon G
    Biotechnol Prog; 2002; 18(6):1306-17. PubMed ID: 12467467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the binding behavior and conformational states of globular proteins in reversed-phase high-performance liquid chromatography.
    Purcell AW; Aguilar MI; Hearn MT
    Anal Chem; 1999 Jul; 71(13):2440-51. PubMed ID: 10405610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversed-phase chromatographic behavior of proteins in different unfolded states.
    Lin SW; Karger BL
    J Chromatogr; 1990 Jan; 499():89-102. PubMed ID: 2324224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance hydrophobic-interaction chromatography on ether-bonded phases. Chromatographic characteristics and gradient optimization.
    Miller NT; Karger BL
    J Chromatogr; 1985 Jun; 326():45-61. PubMed ID: 4030950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational studies of bovine alkaline phosphatase in hydrophobic interaction and size-exclusion chromatography with linear diode array and low-angle laser light scattering detection.
    Krull IS; Stuting HH; Krzysko SC
    J Chromatogr; 1988 Jun; 442():29-52. PubMed ID: 3417821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study on the rule of solvent strength in reversed-phase liquid chromatography].
    Zhang WP; Guo H; Gao J; Geng XD
    Se Pu; 2000 Nov; 18(6):475-9. PubMed ID: 12541730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance liquid chromatography of amino acids, peptides and proteins. LXXXV. Evaluation of the use of hydrophobicity coefficients for the prediction of peptide elution profiles.
    Hearn MT; Aguilar MI; Mant CT; Hodges RS
    J Chromatogr; 1988 Apr; 438(2):197-210. PubMed ID: 3384884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention Behavior of Polyethylene Glycol and Its Influence on Protein Elution on Hydrophobic Interaction Chromatography Media.
    Marek WK; Piątkowski W; Antos D
    Chromatographia; 2018; 81(12):1641-1648. PubMed ID: 30546156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic fluorescence studies of the kinetic mechanism of unfolding of alpha-lactalbumin on weakly hydrophobic chromatographic surfaces.
    Oroszlan P; Blanco R; Lu XM; Yarmush D; Karger BL
    J Chromatogr; 1990 Feb; 500():481-502. PubMed ID: 2329148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of linear and nonlinear models for retention prediction in liquid chromatography.
    Gilar M; Hill J; McDonald TS; Gritti F
    J Chromatogr A; 2020 Feb; 1613():460690. PubMed ID: 31727355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of unfolding of proteins on hydrophobic surfaces in reversed-phase liquid chromatography.
    Benedek K; Dong S; Karger BL
    J Chromatogr; 1984 Dec; 317():227-43. PubMed ID: 6530435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple peaks in high-performance liquid chromatography of proteins. beta-Lactoglobulins eluted in a hydrophobic interaction chromatography system.
    de Frutos M; Cifuentes A; Díez-Masa JC
    J Chromatogr A; 1997 Aug; 778(1-2):43-52. PubMed ID: 9299727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-mediated retention effects of subtilisin site-specific variants in cation-exchange chromatography.
    Chicz RM; Regnier FE
    J Chromatogr; 1988 Jun; 443():193-203. PubMed ID: 3049647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.