BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

752 related articles for article (PubMed ID: 35585567)

  • 1. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets.
    Tie Y; Tang F; Wei YQ; Wei XW
    J Hematol Oncol; 2022 May; 15(1):61. PubMed ID: 35585567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression.
    Saleh R; Elkord E
    Semin Cancer Biol; 2020 Oct; 65():13-27. PubMed ID: 31362073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy.
    Gao A; Sun Y; Peng G
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):278-285. PubMed ID: 29649510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness.
    Barnestein R; Galland L; Kalfeist L; Ghiringhelli F; Ladoire S; Limagne E
    Oncoimmunology; 2022; 11(1):2120676. PubMed ID: 36117524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of costimulatory and inhibitory receptors in FoxP3
    Toker A; Ohashi PS
    Adv Cancer Res; 2019; 144():193-261. PubMed ID: 31349899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FoxP3
    Saleh R; Elkord E
    Cancer Lett; 2020 Oct; 490():174-185. PubMed ID: 32721551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer.
    Stultz J; Fong L
    Prostate Cancer Prostatic Dis; 2021 Sep; 24(3):697-717. PubMed ID: 33820953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Immune cell contexture in the tumor microenvironment].
    Fujii SI
    Rinsho Ketsueki; 2020; 61(9):1424-1432. PubMed ID: 33162545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment.
    Nakamura K; Smyth MJ
    Cell Mol Immunol; 2020 Jan; 17(1):1-12. PubMed ID: 31611651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors.
    Hou A; Hou K; Huang Q; Lei Y; Chen W
    Front Immunol; 2020; 11():783. PubMed ID: 32508809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune Landscape of Thyroid Cancers: New Insights.
    Menicali E; Guzzetti M; Morelli S; Moretti S; Puxeddu E
    Front Endocrinol (Lausanne); 2020; 11():637826. PubMed ID: 33986723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of Immunosuppressive Cells as a Target for Immunotherapies in Melanoma and Non-Melanoma Skin Cancers.
    Fujimura T; Aiba S
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32707850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treg-mediated acquired resistance to immune checkpoint inhibitors.
    Saleh R; Elkord E
    Cancer Lett; 2019 Aug; 457():168-179. PubMed ID: 31078738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-cell programming in pancreatic adenocarcinoma: a review.
    Seo YD; Pillarisetty VG
    Cancer Gene Ther; 2017 Mar; 24(3):106-113. PubMed ID: 27910859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunotherapy in treatment of metastatic prostate cancer: An approach to circumvent immunosuppressive tumor microenvironment.
    Sun BL
    Prostate; 2021 Nov; 81(15):1125-1134. PubMed ID: 34435699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic cell-based cancer immunotherapy in the era of immune checkpoint inhibitors: From bench to bedside.
    Ghorbaninezhad F; Asadzadeh Z; Masoumi J; Mokhtarzadeh A; Kazemi T; Aghebati-Maleki L; Shotorbani SS; Shadbad MA; Baghbanzadeh A; Hemmat N; Bakhshivand M; Baradaran B
    Life Sci; 2022 May; 297():120466. PubMed ID: 35271882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High immunosuppressive burden in cancer patients: a major hurdle for cancer immunotherapy.
    Kalathil SG; Thanavala Y
    Cancer Immunol Immunother; 2016 Jul; 65(7):813-9. PubMed ID: 26910314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune escape mechanisms and immunotherapy of urothelial bladder cancer.
    Yang Z; Xu Y; Bi Y; Zhang N; Wang H; Xing T; Bai S; Shen Z; Naz F; Zhang Z; Yin L; Shi M; Wang L; Wang L; Wang S; Xu L; Su X; Wu S; Yu C
    J Clin Transl Res; 2021 Aug; 7(4):485-500. PubMed ID: 34541363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies.
    Nishikawa H; Koyama S
    J Immunother Cancer; 2021 Jul; 9(7):. PubMed ID: 34330764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balancing cancer immunotherapy and immune-related adverse events: The emerging role of regulatory T cells.
    Alissafi T; Hatzioannou A; Legaki AI; Varveri A; Verginis P
    J Autoimmun; 2019 Nov; 104():102310. PubMed ID: 31421963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.