These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 35585837)
1. Anti-Disturbance Sliding Mode Control of a Novel Variable Stiffness Actuator for the Rehabilitation of Neurologically Disabled Patients. Mo L; Feng P; Shao Y; Shi D; Ju L; Zhang W; Ding X Front Robot AI; 2022; 9():864684. PubMed ID: 35585837 [TBL] [Abstract][Full Text] [Related]
2. Design and Control of a Series-Parallel Elastic Actuator for a Weight-Bearing Exoskeleton Robot. Wang T; Zheng T; Zhao S; Sui D; Zhao J; Zhu Y Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161799 [TBL] [Abstract][Full Text] [Related]
3. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related]
4. Model-free finite-time robust control using fractional-order ultra-local model and prescribed performance sliding surface for upper-limb rehabilitation exoskeleton. He D; Wang H; Tian Y; Ma X ISA Trans; 2024 Apr; 147():511-526. PubMed ID: 38336511 [TBL] [Abstract][Full Text] [Related]
5. Series-elastic actuator with two degree-of-freedom PID control improves torque control in a powered knee exoskeleton. Sarkisian SV; Gabert L; Lenzi T Wearable Technol; 2023; 4():e25. PubMed ID: 38510590 [TBL] [Abstract][Full Text] [Related]
6. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation. Pérez-San Lázaro R; Salgado I; Chairez I ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173 [TBL] [Abstract][Full Text] [Related]
7. Design and Control of a Polycentric Knee Exoskeleton Using an Electro-Hydraulic Actuator. Lee T; Lee D; Song B; Baek YS Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905974 [TBL] [Abstract][Full Text] [Related]
8. An Elbow Exoskeleton for Upper Limb Rehabilitation with Series Elastic Actuator and Cable-driven Differential. Chen T; Casas R; Lum PS IEEE Trans Robot; 2019 Dec; 35(6):1464-1474. PubMed ID: 31929766 [TBL] [Abstract][Full Text] [Related]
9. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb. Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995 [TBL] [Abstract][Full Text] [Related]
10. Model-free robust adaptive integral sliding mode impedance control of knee-ankle-toe active transfemoral prosthesis. Wu Z; Chen Y; Geng Y; Wang X; Xuan B Int J Med Robot; 2022 Jun; 18(3):e2378. PubMed ID: 35133713 [TBL] [Abstract][Full Text] [Related]
11. Sliding Mode-Based Active Disturbance Rejection Control of Assistive Exoskeleton Device for Rehabilitation of Disabled Lower Limbs. Alawad NA; Humaidi AJ; Alaraji AS An Acad Bras Cienc; 2023; 95(2):e20220680. PubMed ID: 37341275 [TBL] [Abstract][Full Text] [Related]
12. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer. Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727 [TBL] [Abstract][Full Text] [Related]
13. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot. Ai Q; Zhu C; Zuo J; Meng W; Liu Q; Xie SQ; Yang M Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283406 [TBL] [Abstract][Full Text] [Related]
14. Design and validation of a pediatric gait assistance exoskeleton system with fast non-singular terminal sliding mode controller. Narayan J; Abbas M; Dwivedy SK Med Eng Phys; 2024 Jan; 123():104080. PubMed ID: 38365333 [TBL] [Abstract][Full Text] [Related]
15. Anti-disturbance speed control of low-speed high-torque PMSM based on second-order non-singular terminal sliding mode load observer. Lu E; Li W; Yang X; Liu Y ISA Trans; 2019 May; 88():142-152. PubMed ID: 30563689 [TBL] [Abstract][Full Text] [Related]
16. Friction Compensation Control of Electromechanical Actuator Based on Neural Network Adaptive Sliding Mode. Ruan W; Dong Q; Zhang X; Li Z Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671572 [TBL] [Abstract][Full Text] [Related]
17. Backstepping control based on adaptive neural network and disturbance observer for reconfigurable variable stiffness actuator. Zhu Y; Wu Q; Chen B; Ye K; Zhang Q ISA Trans; 2024 Sep; 152():318-330. PubMed ID: 38908963 [TBL] [Abstract][Full Text] [Related]
18. Adaptive Non-Singular Terminal Sliding Mode Control Method for Electromagnetic Linear Actuator. Lu Y; Lu J; Tan C; Tian M; Dong G Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014216 [TBL] [Abstract][Full Text] [Related]
19. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot. Niu J; Yang Q; Chen G; Song R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896 [TBL] [Abstract][Full Text] [Related]
20. Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot. Zhang Q; Sun D; Qian W; Xiao X; Guo Z Front Neurorobot; 2020; 14():13. PubMed ID: 32161531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]