These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 35585984)
1. β-1,6-Glucan From Wang X; Qu Y; Wang Y; Wang X; Xu J; Zhao H; Zheng D; Sun L; Tai G; Zhou Y; Cheng H Front Immunol; 2022; 13():859923. PubMed ID: 35585984 [TBL] [Abstract][Full Text] [Related]
2. Effects of Rich in Β-Glucans Edible Mushrooms on Aging Gut Microbiota Characteristics: An In Vitro Study. Mitsou EK; Saxami G; Stamoulou E; Kerezoudi E; Terzi E; Koutrotsios G; Bekiaris G; Zervakis GI; Mountzouris KC; Pletsa V; Kyriacou A Molecules; 2020 Jun; 25(12):. PubMed ID: 32570735 [TBL] [Abstract][Full Text] [Related]
3. Olive Mill Waste Enhances α-Glucan Content in the Edible Mushroom Pleurotus eryngii. Avni S; Ezove N; Hanani H; Yadid I; Karpovsky M; Hayby H; Gover O; Hadar Y; Schwartz B; Danay O Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28718825 [TBL] [Abstract][Full Text] [Related]
4. Effect of mushroom polysaccharides from Pleurotus eryngii on obesity and gut microbiota in mice fed a high-fat diet. Nakahara D; Nan C; Mori K; Hanayama M; Kikuchi H; Hirai S; Egashira Y Eur J Nutr; 2020 Oct; 59(7):3231-3244. PubMed ID: 31865422 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the structural and immunomodulatory properties of alkali-soluble β-glucans from Pleurotus eryngii fruiting bodies. Ellefsen CF; Lindstad L; Klau LJ; Aachmann FL; Hiorth M; Samuelsen ABC Carbohydr Polym; 2023 Dec; 322():121367. PubMed ID: 37839837 [TBL] [Abstract][Full Text] [Related]
6. Water-soluble polysaccharides from Pleurotus eryngii fruiting bodies, their activity and affinity for Toll-like receptor 2 and dectin-1. Ellefsen CF; Wold CW; Wilkins AL; Rise F; Samuelsen ABC Carbohydr Polym; 2021 Jul; 264():117991. PubMed ID: 33910729 [TBL] [Abstract][Full Text] [Related]
7. Polysaccharides from Pleurotus eryngii: Selective extraction methodologies and their modulatory effects on THP-1 macrophages. Abreu H; Zavadinack M; Smiderle FR; Cipriani TR; Cordeiro LMC; Iacomini M Carbohydr Polym; 2021 Jan; 252():117177. PubMed ID: 33183624 [TBL] [Abstract][Full Text] [Related]
8. Spatial Distribution of Glucan Type and Content between Caps and Stalks in Vetvicka V; Gover O; Hayby H; Danay O; Ezov N; Hadar Y; Schwartz B Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373293 [No Abstract] [Full Text] [Related]
9. Pleurotus eryngii polysaccharides alleviate aflatoxin B Fu Y; Wang Q; Guo Y; Koci M; Lu Z; Zeng X; Wang Y; Tang Y; Ma Q; Ji C; Zhao L Int J Biol Macromol; 2024 Jun; 271(Pt 1):132371. PubMed ID: 38750861 [TBL] [Abstract][Full Text] [Related]
10. Selenium biofortification in Pleurotus eryngii and its effect on lead adsorption of gut microbiota via in vitro fermentation. Ji Y; Hu Q; Ma G; Yu A; Zhao L; Zhang X; Zhao R Food Chem; 2022 Dec; 396():133664. PubMed ID: 35841676 [TBL] [Abstract][Full Text] [Related]
11. In vivo fermentation of a Pleurotus eryngii polysaccharide and its effects on fecal microbiota composition and immune response. Ma G; Kimatu BM; Zhao L; Yang W; Pei F; Hu Q Food Funct; 2017 May; 8(5):1810-1821. PubMed ID: 28513745 [TBL] [Abstract][Full Text] [Related]
12. (1 → 3),(1 → 6) and (1 → 3)-β-D-glucan physico-chemical features drive their fermentation profile by the human gut microbiota. Zavadinack M; Cantu-Jungles TM; Abreu H; Ozturk OK; Cordeiro LMC; de Freitas RA; Hamaker BR; Iacomini M Carbohydr Polym; 2024 Mar; 327():121678. PubMed ID: 38171663 [TBL] [Abstract][Full Text] [Related]
13. Characterization of polysaccharide from Pleurotus eryngii during simulated gastrointestinal digestion and fermentation. Ma G; Xu Q; Du H; Muinde Kimatu B; Su A; Yang W; Hu Q; Xiao H Food Chem; 2022 Feb; 370():131303. PubMed ID: 34662794 [TBL] [Abstract][Full Text] [Related]
14. Substrate Use Prioritization by a Coculture of Five Species of Gut Bacteria Fed Mixtures of Arabinoxylan, Xyloglucan, β-Glucan, and Pectin. Liu Y; Heath AL; Galland B; Rehrer N; Drummond L; Wu XY; Bell TJ; Lawley B; Sims IM; Tannock GW Appl Environ Microbiol; 2020 Jan; 86(2):. PubMed ID: 31676481 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant Activity of Polysaccharides from the Edible Mushroom Petraglia T; Latronico T; Fanigliulo A; Crescenzi A; Liuzzi GM; Rossano R Molecules; 2023 Feb; 28(5):. PubMed ID: 36903422 [TBL] [Abstract][Full Text] [Related]
16. Dietary Intake of Pleurotus eryngii Ameliorated Dextran-Sodium-Sulfate-Induced Colitis in Mice. Hu Q; Yuan B; Wu X; Du H; Gu M; Han Y; Yang W; Song M; Xiao H Mol Nutr Food Res; 2019 Sep; 63(17):e1801265. PubMed ID: 31125180 [TBL] [Abstract][Full Text] [Related]
17. Immunomodulating Effects Exerted by Glucans Extracted from the King Oyster Culinary-Medicinal Mushroom Pleurotus eryngii (Agaricomycetes) Grown in Substrates Containing Various Concentrations of Olive Mill Waste. Vetvicka V; Gover O; Hayby H; Danay O; Ezov N; Hadar Y; Schwartz B Int J Med Mushrooms; 2019; 21(8):765-781. PubMed ID: 31679284 [TBL] [Abstract][Full Text] [Related]
18. Changes in chemical components and cytotoxicity at different maturity stages of Pleurotus eryngii fruiting body. Cui F; Li Y; Yang Y; Sun W; Wu D; Ping L J Agric Food Chem; 2014 Dec; 62(52):12631-40. PubMed ID: 25483207 [TBL] [Abstract][Full Text] [Related]
19. Yeast β-glucan alleviates cognitive deficit by regulating gut microbiota and metabolites in Aβ Xu M; Mo X; Huang H; Chen X; Liu H; Peng Z; Chen L; Rong S; Yang W; Xu S; Liu L Int J Biol Macromol; 2020 Oct; 161():258-270. PubMed ID: 32522544 [TBL] [Abstract][Full Text] [Related]
20. Immunomodulatory Effects of Extracellular β-Glucan Isolated from the King Oyster Mushroom Pleurotus eryngii (Agaricomycetes) and Its Sulfated Form on Signaling Molecules Involved in Innate Immunity. Kim YH; Jung EG; Han KI; Patnaik BB; Kwon HJ; Lee HS; Kim WJ; Han MD Int J Med Mushrooms; 2017; 19(6):521-533. PubMed ID: 29199562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]