These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 35586133)
1. The Microphenotron: a novel method for screening plant growth-promoting rhizobacteria. Raheem A; Ali B PeerJ; 2022; 10():e13438. PubMed ID: 35586133 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Selected Plant Growth-Promoting Rhizobacteria and Their Non-Host Growth Promotion Effects. Fan D; Smith DL Microbiol Spectr; 2021 Sep; 9(1):e0027921. PubMed ID: 34190589 [TBL] [Abstract][Full Text] [Related]
3. Screening plant growth-promoting bacteria from the rhizosphere of invasive weed Xia Y; Zhang H; Zhang Y; Zhang Y; Liu J; Seviour R; Kong Y PeerJ; 2023; 11():e15064. PubMed ID: 36923499 [TBL] [Abstract][Full Text] [Related]
4. Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. Kisiel A; Kępczyńska E Planta; 2016 May; 243(5):1169-89. PubMed ID: 26861677 [TBL] [Abstract][Full Text] [Related]
5. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Khalid A; Arshad M; Zahir ZA J Appl Microbiol; 2004; 96(3):473-80. PubMed ID: 14962127 [TBL] [Abstract][Full Text] [Related]
6. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Dey R; Pal KK; Bhatt DM; Chauhan SM Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384 [TBL] [Abstract][Full Text] [Related]
7. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Lewis DR; Ramirez MV; Miller ND; Vallabhaneni P; Ray WK; Helm RF; Winkel BS; Muday GK Plant Physiol; 2011 May; 156(1):144-64. PubMed ID: 21427279 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. Liu J; Tang L; Gao H; Zhang M; Guo C J Sci Food Agric; 2019 Jan; 99(1):281-289. PubMed ID: 29855046 [TBL] [Abstract][Full Text] [Related]
9. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. López-Bucio J; Campos-Cuevas JC; Hernández-Calderón E; Velásquez-Becerra C; Farías-Rodríguez R; Macías-Rodríguez LI; Valencia-Cantero E Mol Plant Microbe Interact; 2007 Feb; 20(2):207-17. PubMed ID: 17313171 [TBL] [Abstract][Full Text] [Related]
10. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. Ghosh D; Gupta A; Mohapatra S World J Microbiol Biotechnol; 2019 May; 35(6):90. PubMed ID: 31147784 [TBL] [Abstract][Full Text] [Related]
11. IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass. Fierro-Coronado RA; Quiroz-Figueroa FR; García-Pérez LM; Ramírez-Chávez E; Molina-Torres J; Maldonado-Mendoza IE Can J Microbiol; 2014 Oct; 60(10):639-48. PubMed ID: 25231840 [TBL] [Abstract][Full Text] [Related]
12. The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology. Burrell T; Fozard S; Holroyd GH; French AP; Pound MP; Bigley CJ; James Taylor C; Forde BG Plant Methods; 2017; 13():10. PubMed ID: 28265297 [TBL] [Abstract][Full Text] [Related]
14. Isolation and identification of multi-trait plant growth-promoting rhizobacteria from coastal sand dune plant species of Pohang beach. Moon YS; Ali S Folia Microbiol (Praha); 2022 Jun; 67(3):523-533. PubMed ID: 35211835 [TBL] [Abstract][Full Text] [Related]
15. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. Li X; Yan Z; Gu D; Li D; Tao Y; Zhang D; Su L; Ao Y J Basic Microbiol; 2019 Jun; 59(6):579-590. PubMed ID: 30980735 [TBL] [Abstract][Full Text] [Related]
16. 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Plant Growth-Promoting Rhizobacteria Improve Drought Stress Tolerance in Grapevine ( Duan B; Li L; Chen G; Su-Zhou C; Li Y; Merkeryan H; Liu W; Liu X Front Plant Sci; 2021; 12():706990. PubMed ID: 37388278 [TBL] [Abstract][Full Text] [Related]
17. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Zúñiga A; Poupin MJ; Donoso R; Ledger T; Guiliani N; Gutiérrez RA; González B Mol Plant Microbe Interact; 2013 May; 26(5):546-53. PubMed ID: 23301615 [TBL] [Abstract][Full Text] [Related]
18. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. Chen L; Dodd IC; Theobald JC; Belimov AA; Davies WJ J Exp Bot; 2013 Apr; 64(6):1565-73. PubMed ID: 23404897 [TBL] [Abstract][Full Text] [Related]
19. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. Siddikee MA; Chauhan PS; Anandham R; Han GH; Sa T J Microbiol Biotechnol; 2010 Nov; 20(11):1577-84. PubMed ID: 21124065 [TBL] [Abstract][Full Text] [Related]
20. Diversity analysis of ACC deaminase producing bacteria associated with rhizosphere of coconut tree (Cocos nucifera L.) grown in Lakshadweep islands of India and their ability to promote plant growth under saline conditions. Pandey S; Gupta S J Biotechnol; 2020 Dec; 324():183-197. PubMed ID: 33164860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]