These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3558619)

  • 1. Predicting bandwidth in the high-performance liquid chromatographic separation of large biomolecules. I. Size-exclusion studies and the role of solute stokes diameter versus particle pore diameter.
    Ghrist BF; Stadalius MA; Snyder LR
    J Chromatogr; 1987 Jan; 387():1-19. PubMed ID: 3558619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting bandwidth in the high-performance liquid chromatographic separation of large biomolecules. II. A general model for the four common high-performance liquid chromatography methods.
    Stadalius MA; Ghrist BF; Snyder LR
    J Chromatogr; 1987 Jan; 387():21-40. PubMed ID: 3558622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional high-performance liquid chromatography using monodisperse polymer beads containing segregated chemistries prepared by pore size specific functionalization. Single-column combinations of size exclusion or ion exchange with reversed-phase chromatography.
    Smigol V; Svec F; Fréchet JM
    Anal Chem; 1994 Dec; 66(23):4308-15. PubMed ID: 7847631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of steric exclusion on the separation of proteins by hydrophilic size-exclusion chromatography.
    Meng QC; Chen YF; Delucas LJ; Oparil S
    J Chromatogr; 1988 Jul; 445(1):29-36. PubMed ID: 2463993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of molecular size by size-exclusion chromatography (gel filtration).
    Irvine GB
    Curr Protoc Cell Biol; 2001 May; Chapter 5():Unit 5.5. PubMed ID: 18228373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-exclusion high-performance liquid chromatography of peptides. Requirement for peptide standards to monitor column performance and non-ideal behaviour.
    Mant CT; Parker JM; Hodges RS
    J Chromatogr; 1987 Jun; 397():99-112. PubMed ID: 3654835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the effects of column porosity on gradient separations of proteins.
    Urban J; Jandera P; Kucerová Z; van Straten MA; Claessens HA
    J Chromatogr A; 2007 Oct; 1167(1):63-75. PubMed ID: 17804002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of proteins by reversed-phase high-performance liquid chromatography. I. Optimizing the column.
    Burton WG; Nugent KD; Slattery TK; Summers BR; Snyder LR
    J Chromatogr; 1988 Jun; 443():363-79. PubMed ID: 2844841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance liquid chromatography of amino acids, peptides and proteins. LXVII. Evaluation of bandwidth relationships of peptides related to human beta-endorphin, separated by gradient-elution reversed-phase high-performance liquid chromatography.
    Hearn MT; Aguilar MI
    J Chromatogr; 1986 Feb; 352():35-66. PubMed ID: 2939099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance.
    Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of pore size distributions in capillary-channeled polymer fiber stationary phases by inverse size-exclusion chromatography and implications for fast protein separations.
    Wang Z; Marcus RK
    J Chromatogr A; 2014 Jul; 1351():82-9. PubMed ID: 24877979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superficially porous particles with 1000Å pores for large biomolecule high performance liquid chromatography and polymer size exclusion chromatography.
    Wagner BM; Schuster SA; Boyes BE; Shields TJ; Miles WL; Haynes MJ; Moran RE; Kirkland JJ; Schure MR
    J Chromatogr A; 2017 Mar; 1489():75-85. PubMed ID: 28213987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous size-exclusion chromatographic separations of intact proteins under native conditions: Effect of pressure on selectivity and efficiency.
    De Vos J; Kaal ER; Swart R; Baca M; Heyden YV; Eeltink S
    J Sep Sci; 2016 Feb; 39(4):689-95. PubMed ID: 26549319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of high-performance liquid chromatographic separations of peptide and protein digests for development of size-exclusion, ion-exchange and reversed-phase chromatographic methods.
    Hodges RS; Parker JM; Mant CT; Sharma RR
    J Chromatogr; 1988 Dec; 458():147-67. PubMed ID: 3235631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-exclusion chromatography using reverse-phase columns for protein separation.
    Huang TY; Chi LM; Chien KY
    J Chromatogr A; 2018 Oct; 1571():201-212. PubMed ID: 30146374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of both fibrous and globular proteins on the basis of molecular weight using high-performance size exclusion chromatography.
    Barden JA
    Anal Biochem; 1983 Nov; 135(1):52-7. PubMed ID: 6670748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography.
    Afeyan NB; Gordon NF; Mazsaroff I; Varady L; Fulton SP; Yang YB; Regnier FE
    J Chromatogr; 1990 Oct; 519(1):1-29. PubMed ID: 2077042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do column frits contribute to the on-column, flow-induced degradation of macromolecules?
    Striegel AM
    J Chromatogr A; 2014 Sep; 1359():147-55. PubMed ID: 25085820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of proteins by reversed-phase high-performance liquid chromatography. II. Optimizing sample pretreatment and mobile phase conditions.
    Nugent KD; Burton WG; Slattery TK; Johnson BF; Snyder LR
    J Chromatogr; 1988 Jun; 443():381-97. PubMed ID: 3049650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance liquid chromatography of biopolymers.
    Regnier FE
    Science; 1983 Oct; 222(4621):245-52. PubMed ID: 6353575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.