These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 35586249)
1. Bomfim CCB; Fisher L; Amaral EP; Mittereder L; McCann K; Correa AAS; Namasivayam S; Swamydas M; Moayeri M; Weiss JM; Chari R; McVicar DW; Costa DL; D'Império Lima MR; Sher A Front Cell Infect Microbiol; 2022; 12():862582. PubMed ID: 35586249 [TBL] [Abstract][Full Text] [Related]
2. Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1. Shi S; Blumenthal A; Hickey CM; Gandotra S; Levy D; Ehrt S J Immunol; 2005 Sep; 175(5):3318-28. PubMed ID: 16116224 [TBL] [Abstract][Full Text] [Related]
3. Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. Means TK; Jones BW; Schromm AB; Shurtleff BA; Smith JA; Keane J; Golenbock DT; Vogel SN; Fenton MJ J Immunol; 2001 Mar; 166(6):4074-82. PubMed ID: 11238656 [TBL] [Abstract][Full Text] [Related]
4. Alternate class I MHC antigen processing is inhibited by Toll-like receptor signaling pathogen-associated molecular patterns: Mycobacterium tuberculosis 19-kDa lipoprotein, CpG DNA, and lipopolysaccharide. Tobian AA; Potter NS; Ramachandra L; Pai RK; Convery M; Boom WH; Harding CV J Immunol; 2003 Aug; 171(3):1413-22. PubMed ID: 12874233 [TBL] [Abstract][Full Text] [Related]
5. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Hölscher C; Reiling N; Schaible UE; Hölscher A; Bathmann C; Korbel D; Lenz I; Sonntag T; Kröger S; Akira S; Mossmann H; Kirschning CJ; Wagner H; Freudenberg M; Ehlers S Eur J Immunol; 2008 Mar; 38(3):680-94. PubMed ID: 18266299 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of IFN-gamma-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. Pai RK; Convery M; Hamilton TA; Boom WH; Harding CV J Immunol; 2003 Jul; 171(1):175-84. PubMed ID: 12816996 [TBL] [Abstract][Full Text] [Related]
7. The cGAS/STING Pathway Is Important for Dendritic Cell Activation but Is Not Essential to Induce Protective Immunity against Mycobacterium tuberculosis Infection. Marinho FV; Benmerzoug S; Rose S; Campos PC; Marques JT; Báfica A; Barber G; Ryffel B; Oliveira SC; Quesniaux VFJ J Innate Immun; 2018; 10(3):239-252. PubMed ID: 29791904 [TBL] [Abstract][Full Text] [Related]
8. Recombinant Lipoprotein Rv1016c Derived from Su H; Zhu S; Zhu L; Huang W; Wang H; Zhang Z; Xu Y Front Cell Infect Microbiol; 2016; 6():147. PubMed ID: 27917375 [TBL] [Abstract][Full Text] [Related]
11. Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms. Fortune SM; Solache A; Jaeger A; Hill PJ; Belisle JT; Bloom BR; Rubin EJ; Ernst JD J Immunol; 2004 May; 172(10):6272-80. PubMed ID: 15128816 [TBL] [Abstract][Full Text] [Related]
12. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation. Hoshino K; Kaisho T; Iwabe T; Takeuchi O; Akira S Int Immunol; 2002 Oct; 14(10):1225-31. PubMed ID: 12356687 [TBL] [Abstract][Full Text] [Related]
13. Different Signaling Pathways Define Different Interferon-Stimulated Gene Expression during Mycobacteria Infection in Macrophages. Zhou X; Yang J; Zhang Z; Zhang L; Zhu B; Lie L; Huang Y; Ma R; Zhou C; Hu S; Wen Q; Ma L Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30717477 [TBL] [Abstract][Full Text] [Related]
14. Induction of macrophage-derived SLPI by Mycobacterium tuberculosis depends on TLR2 but not MyD88. Ding A; Yu H; Yang J; Shi S; Ehrt S Immunology; 2005 Nov; 116(3):381-9. PubMed ID: 16236128 [TBL] [Abstract][Full Text] [Related]
15. Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of Pahari S; Negi S; Aqdas M; Arnett E; Schlesinger LS; Agrewala JN Autophagy; 2020 Jun; 16(6):1021-1043. PubMed ID: 31462144 [TBL] [Abstract][Full Text] [Related]
16. Intracellular bacterial infection-induced IFN-gamma is critically but not solely dependent on Toll-like receptor 4-myeloid differentiation factor 88-IFN-alpha beta-STAT1 signaling. Rothfuchs AG; Trumstedt C; Wigzell H; Rottenberg ME J Immunol; 2004 May; 172(10):6345-53. PubMed ID: 15128825 [TBL] [Abstract][Full Text] [Related]
17. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Pathak SK; Basu S; Basu KK; Banerjee A; Pathak S; Bhattacharyya A; Kaisho T; Kundu M; Basu J Nat Immunol; 2007 Jun; 8(6):610-8. PubMed ID: 17486091 [TBL] [Abstract][Full Text] [Related]
18. The immunosuppressive effects of a novel recombinant LipQ (Rv2485c) protein of Mycobacterium tuberculosis on human macrophage cell lines. Kumar A; Manisha ; Sangha GK; Shrivastava A; Kaur J Microb Pathog; 2017 Jun; 107():361-367. PubMed ID: 28412202 [TBL] [Abstract][Full Text] [Related]
19. The Tumor Necrosis Factor Alpha and Interleukin 6 Auto-paracrine Signaling Loop Controls Mycobacterium avium Infection via Induction of IRF1/IRG1 in Human Primary Macrophages. Gidon A; Louet C; Røst LM; Bruheim P; Flo TH mBio; 2021 Oct; 12(5):e0212121. PubMed ID: 34607464 [TBL] [Abstract][Full Text] [Related]
20. MyD88 primes macrophages for full-scale activation by interferon-gamma yet mediates few responses to Mycobacterium tuberculosis. Shi S; Nathan C; Schnappinger D; Drenkow J; Fuortes M; Block E; Ding A; Gingeras TR; Schoolnik G; Akira S; Takeda K; Ehrt S J Exp Med; 2003 Oct; 198(7):987-97. PubMed ID: 14517275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]