BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35586369)

  • 1. Automation of Controlled/Living Radical Polymerization.
    Tamasi M; Kosuri S; DiStefano J; Chapman R; Gormley AJ
    Adv Intell Syst; 2020 Feb; 2(2):. PubMed ID: 35586369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled/"living" radical polymerization-based signal amplification strategies for biosensing.
    Hu Q; Gan S; Bao Y; Zhang Y; Han D; Niu L
    J Mater Chem B; 2020 Apr; 8(16):3327-3340. PubMed ID: 31854432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme Degassing for Oxygen-Sensitive Reactions in Open Vessels of an Automated Parallel Synthesizer: RAFT Polymerizations.
    Wang M; Zhang J; Guerrero-Sanchez C; Schubert US; Feng A; Thang SH
    ACS Comb Sci; 2019 Oct; 21(10):643-649. PubMed ID: 31498991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial Low-Volume Synthesis of Well-Defined Polymers by Enzyme Degassing.
    Chapman R; Gormley AJ; Stenzel MH; Stevens MM
    Angew Chem Int Ed Engl; 2016 Mar; 55(14):4500-3. PubMed ID: 26939064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Oxygen-Tolerant PET-RAFT Polymerization for Screening Structure-Activity Relationships.
    Gormley AJ; Yeow J; Ng G; Conway Ó; Boyer C; Chapman R
    Angew Chem Int Ed Engl; 2018 Feb; 57(6):1557-1562. PubMed ID: 29316089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry.
    Wang HS; Song M; Hang TJ
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):2881-98. PubMed ID: 26785308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of biointerfaces composed of soft materials using controlled radical polymerizations.
    Masuda T; Takai M
    J Mater Chem B; 2022 Mar; 10(10):1473-1485. PubMed ID: 35044413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinduced Iron-Catalyzed ATRP of Renewable Monomers in Low-Toxicity Solvents: A Greener Approach.
    Parkatzidis K; Boner S; Wang HS; Anastasaki A
    ACS Macro Lett; 2022 Jul; 11(7):841-846. PubMed ID: 35731694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallocene-Containing Homopolymers and Heterobimetallic Block Copolymers via Photoinduced RAFT Polymerization.
    Yang P; Pageni P; Kabir MP; Zhu T; Tang C
    ACS Macro Lett; 2016 Nov; 5(11):1293-1300. PubMed ID: 29276651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyhomologation. A living C1 polymerization.
    Luo J; Shea KJ
    Acc Chem Res; 2010 Nov; 43(11):1420-33. PubMed ID: 20825177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Self-Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT Polymerization.
    Yeow J; Joshi S; Chapman R; Boyer C
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10102-10106. PubMed ID: 29696755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated Combinatorial High Throughput Star Polymer Synthesis via a Rapid One-Pot Sequential Aqueous RAFT (rosa-RAFT) Polymerization Scheme.
    Cosson S; Danial M; Saint-Amans JR; Cooper-White JJ
    Macromol Rapid Commun; 2017 Apr; 38(8):. PubMed ID: 28221701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Atom-Economic Enzymatic Cascade Catalysis for High-Throughput RAFT Synthesis of Ultrahigh Molecular Weight Polymers.
    Li R; Zhang S; Li Q; Qiao GG; An Z
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202213396. PubMed ID: 36151058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchtop Preparation of Polymer Brushes by SI-PET-RAFT: The Effect of the Polymer Composition and Structure on Inhibition of a
    Ng G; Li M; Yeow J; Jung K; Pester CW; Boyer C
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55243-55254. PubMed ID: 33233878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Light in Polymer Science: Photoinduced Reversible Addition-Fragmentation Chain Transfer Polymerization (PET-RAFT) as Innovative Strategy for the Synthesis of Advanced Materials.
    Bellotti V; Simonutti R
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33915928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in the Free and Controlled Radical Homo- and Co-Polymerization of Itaconic Acid Derivatives: Toward Functional Polymers with Controlled Molar Mass Distribution and Architecture.
    Sollka L; Lienkamp K
    Macromol Rapid Commun; 2021 Feb; 42(4):e2000546. PubMed ID: 33270308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Power of Automation in Polymer Chemistry: Precision Synthesis of Multiblock Copolymers with Block Sequence Control.
    Jafari VF; Mossayebi Z; Allison-Logan S; Shabani S; Qiao GG
    Chemistry; 2023 Sep; 29(53):e202301767. PubMed ID: 37401148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteins as Initiators of Controlled Radical Polymerization: Grafting-from via ATRP and RAFT.
    Sumerlin BS
    ACS Macro Lett; 2012 Jan; 1(1):141-145. PubMed ID: 35578469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SI-PET-RAFT: Surface-Initiated Photoinduced Electron Transfer-Reversible Addition-Fragmentation Chain Transfer Polymerization.
    Li M; Fromel M; Ranaweera D; Rocha S; Boyer C; Pester CW
    ACS Macro Lett; 2019 Apr; 8(4):374-380. PubMed ID: 35651140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of RAFT and ATRP methods for controlled radical polymerization.
    Truong NP; Jones GR; Bradford KGE; Konkolewicz D; Anastasaki A
    Nat Rev Chem; 2021 Dec; 5(12):859-869. PubMed ID: 37117386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.