These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3558651)

  • 61. High-temperature liquid chromatography of steroids on a bonded hybrid column.
    Al-Khateeb LA; Smith RM
    Anal Bioanal Chem; 2009 Jul; 394(5):1255-60. PubMed ID: 19152089
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors.
    D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E
    Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Study on the rule of solvent strength in reversed-phase liquid chromatography].
    Zhang WP; Guo H; Gao J; Geng XD
    Se Pu; 2000 Nov; 18(6):475-9. PubMed ID: 12541730
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Measurement of partition coefficients in waterless biphasic liquid systems by countercurrent chromatography.
    Berthod A; Mallet AI; Bully M
    Anal Chem; 1996 Feb; 68(3):431-6. PubMed ID: 21619081
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High performance liquid chromatography as a source of structural information for medicinal chemistry.
    Kaliszan R
    J Chromatogr Sci; 1984 Sep; 22(9):362-70. PubMed ID: 6490787
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy.
    Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG
    J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hydrophobicity estimations by reversed-phase liquid chromatography. Implications for biological partitioning processes.
    Dorsey JG; Khaledi MG
    J Chromatogr; 1993 Dec; 656(1-2):485-99. PubMed ID: 8113337
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Thermodynamic interpretation of retention equilibrium in reversed-phase liquid chromatography.
    Miyabe K
    Anal Sci; 2009 Feb; 25(2):219-27. PubMed ID: 19212057
    [TBL] [Abstract][Full Text] [Related]  

  • 69. UV visualization of inorganic anions by reversed-phase ion-interaction chromatography: factors that control sensitivity and detection.
    Barber WE; Carr PW
    J Chromatogr; 1984 Dec; 316():211-25. PubMed ID: 6530419
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Analysis of self-associations from partition isotherms.
    Adams ET; Beckerdite JM
    Biophys Chem; 1984 Aug; 20(1-2):73-80. PubMed ID: 6487746
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Analysis of the surface diffusion of alkylbenzenes and p-alkylphenols in reversed-phase liquid chromatography using the surface-restricted molecular diffusion model.
    Miyabe K; Guiochon G
    Anal Chem; 2001 Jul; 73(13):3096-106. PubMed ID: 11467559
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Solvatochromic solvent polarity measurements and retention in reversed-phase liquid chromatography.
    Johnson BP; Khaledi MG; Dorsey JG
    Anal Chem; 1986 Oct; 58(12):2354-65. PubMed ID: 3789393
    [No Abstract]   [Full Text] [Related]  

  • 73. Liquid-lipquid partition coefficients by high-pressure liquid chromatography.
    McCall JM
    J Med Chem; 1975 Jun; 18(6):549-52. PubMed ID: 1151966
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mechanistic implications of the equality of compensation temperatures in chromatography.
    Ranatunga R; Vitha MF; Carr PW
    J Chromatogr A; 2002 Feb; 946(1-2):47-9. PubMed ID: 11873981
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Extrathermodynamic relationships in reversed-phase liquid chromatography.
    Miyabet K; Guiochon G
    Anal Chem; 2002 Nov; 74(22):5754-65. PubMed ID: 12463359
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hydrophobicity of complex organic mixtures.
    Verbruggen EM; van Loon WM; Hermens JL
    Environ Sci Pollut Res Int; 1996 Sep; 3(3):163-8. PubMed ID: 24235057
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Elimination kinetics of two unmetabolized polychlorinated biphenyls in Poecilla reticulata after dietary exposure.
    Schrap SM; Opperhuizen A
    Bull Environ Contam Toxicol; 1988 Mar; 40(3):381-8. PubMed ID: 3130913
    [No Abstract]   [Full Text] [Related]  

  • 78. Differences between retentions of various classes of aromatic hydrocarbons in reversed-phase high-performance liquid chromatography. Implications of using retention data for characterizing hydrophobicity.
    Opperhuizen A; Sinnige TL; van der Steen JM; Hutzinger O
    J Chromatogr; 1987 Feb; 388(1):51-64. PubMed ID: 3558651
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High-performance liquid chromatography of substituted p-benzoquinones and p-hydroquinones. II. Retention behavior, quantitative structure-retention relationships and octanol-water partition coefficients.
    Huang JX; Bouvier ES; Stuart JD; Melander WR; Horváth C
    J Chromatogr; 1985 Aug; 330(2):181-92. PubMed ID: 4066822
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Retention reproducibility of basic drugs in high-performance liquid chromatography on a silica column with a methanol-ammonium nitrate eluent. The effect of the mobile phase and the operating conditions.
    Smith RM; Hurdley TG; Gill R; Osselton MD
    J Chromatogr; 1987 Jul; 398():73-87. PubMed ID: 3654853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.