These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35586666)

  • 1. Drug-Drug Interactions Prediction Using Fingerprint Only.
    Ran B; Chen L; Li M; Han Y; Dai Q
    Comput Math Methods Med; 2022; 2022():7818480. PubMed ID: 35586666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GraphSAGE-based model with fingerprints only to predict drug-drug interactions.
    Zhou B; Ran B; Chen L
    Math Biosci Eng; 2024 Jan; 21(2):2922-2942. PubMed ID: 38454713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CNN-DDI: a learning-based method for predicting drug-drug interactions using convolution neural networks.
    Zhang C; Lu Y; Zang T
    BMC Bioinformatics; 2022 Mar; 23(Suppl 1):88. PubMed ID: 35255808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting drug-drug interactions by graph convolutional network with multi-kernel.
    Wang F; Lei X; Liao B; Wu FX
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs.
    Feng YH; Zhang SW
    Molecules; 2022 May; 27(9):. PubMed ID: 35566354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning.
    Zhang Y; Qiu Y; Cui Y; Liu S; Zhang W
    Methods; 2020 Jul; 179():37-46. PubMed ID: 32497603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions.
    Zheng Y; Peng H; Zhang X; Zhao Z; Gao X; Li J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):661. PubMed ID: 31870276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DDIGIP: predicting drug-drug interactions based on Gaussian interaction profile kernels.
    Yan C; Duan G; Pan Y; Wu FX; Wang J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 15):538. PubMed ID: 31874609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of algorithms for predicting drug-drug interactions via inhibition mechanisms: comparison of dynamic and static models.
    Guest EJ; Rowland-Yeo K; Rostami-Hodjegan A; Tucker GT; Houston JB; Galetin A
    Br J Clin Pharmacol; 2011 Jan; 71(1):72-87. PubMed ID: 21143503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label Propagation Prediction of Drug-Drug Interactions Based on Clinical Side Effects.
    Zhang P; Wang F; Hu J; Sorrentino R
    Sci Rep; 2015 Jul; 5():12339. PubMed ID: 26196247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DPDDI: a deep predictor for drug-drug interactions.
    Feng YH; Zhang SW; Shi JY
    BMC Bioinformatics; 2020 Sep; 21(1):419. PubMed ID: 32972364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization.
    Yu H; Mao KT; Shi JY; Huang H; Chen Z; Dong K; Yiu SM
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):14. PubMed ID: 29671393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings.
    Celebi R; Uyar H; Yasar E; Gumus O; Dikenelli O; Dumontier M
    BMC Bioinformatics; 2019 Dec; 20(1):726. PubMed ID: 31852427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs.
    Shi JY; Huang H; Li JX; Lei P; Zhang YN; Dong K; Yiu SM
    BMC Bioinformatics; 2018 Nov; 19(Suppl 14):411. PubMed ID: 30453924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning.
    Yan C; Duan G; Zhang Y; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):168-179. PubMed ID: 32310779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven prediction of adverse drug reactions induced by drug-drug interactions.
    Liu R; AbdulHameed MDM; Kumar K; Yu X; Wallqvist A; Reifman J
    BMC Pharmacol Toxicol; 2017 Jun; 18(1):44. PubMed ID: 28595649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational prediction of drug-drug interactions based on drugs functional similarities.
    Ferdousi R; Safdari R; Omidi Y
    J Biomed Inform; 2017 Jun; 70():54-64. PubMed ID: 28465082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes.
    Hameed PN; Verspoor K; Kusljic S; Halgamuge S
    BMC Bioinformatics; 2017 Mar; 18(1):140. PubMed ID: 28249566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery and explanation of drug-drug interactions via text mining.
    Percha B; Garten Y; Altman RB
    Pac Symp Biocomput; 2012; ():410-21. PubMed ID: 22174296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.