These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 35586871)
21. Assessment of the carcinogenic potential of particulate matter generated from 3D printing devices in Balb/c 3T3-1-1 cells. Lim C; Seo D Sci Rep; 2024 Oct; 14(1):23981. PubMed ID: 39402095 [TBL] [Abstract][Full Text] [Related]
22. Emissions associated with operations of four different additive manufacturing or 3D printing technologies. Zisook RE; Simmons BD; Vater M; Perez A; Donovan EP; Paustenbach DJ; Cyrs WD J Occup Environ Hyg; 2020 Oct; 17(10):464-479. PubMed ID: 32809925 [TBL] [Abstract][Full Text] [Related]
23. On-Site Deployment of an Air-Liquid-Interphase Device to Assess Health Hazard Potency of Airborne Workplace Contaminants: The Case of 3-D Printers. Kim B; Shin JH; Kim HP; Jo MS; Kim HS; Lee JS; Lee HK; Kwon HC; Han SG; Kang N; Gulumian M; Bello D; Yu IJ Front Toxicol; 2022; 4():818942. PubMed ID: 35399295 [TBL] [Abstract][Full Text] [Related]
24. Particle and volatile organic compound emissions from a 3D printer filament extruder. Byrley P; Geer Wallace MA; Boyes WK; Rogers K Sci Total Environ; 2020 Sep; 736():139604. PubMed ID: 32502783 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of particle and volatile organic compound emissions during the use of 3D pens. Do G; Tsai PJ; Yoon C Sci Total Environ; 2024 Jun; 931():173003. PubMed ID: 38710394 [TBL] [Abstract][Full Text] [Related]
26. Carcinogenic and health risk assessment of respiratory exposure to acrylonitrile, 1,3-butadiene and styrene in the petrochemical industry using the US Environmental Protection Agency method. Ahmadi-Moshiran V; Sajedian AA; Soltanzadeh A; Seifi F; Koobasi R; Nikbakht N; Sadeghi-Yarandi M Int J Occup Saf Ergon; 2022 Dec; 28(4):i-ix. PubMed ID: 35363589 [No Abstract] [Full Text] [Related]
27. Evaluation of nanoparticle emissions from a laser printer in an experimental chamber and estimation of the human particle dose. Serfozo N; Ondráček J; Glytsos T; Lazaridis M Environ Sci Pollut Res Int; 2018 May; 25(13):13103-13117. PubMed ID: 29488200 [TBL] [Abstract][Full Text] [Related]
28. Effect of experimental exposures to 3-D printer emissions on nasal allergen responses and lung diffusing capacity for inhaled carbon monoxide/nitric oxide in subjects with seasonal allergic rhinitis. Würzner P; Jörres RA; Karrasch S; Quartucci C; Böse-O'Reilly S; Nowak D; Rakete S Indoor Air; 2022 Nov; 32(11):e13174. PubMed ID: 36437663 [TBL] [Abstract][Full Text] [Related]
29. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. Wojtyła S; Klama P; Baran T J Occup Environ Hyg; 2017 Jun; 14(6):D80-D85. PubMed ID: 28165927 [TBL] [Abstract][Full Text] [Related]
30. Particle and organic vapor emissions from children's 3-D pen and 3-D printer toys. Yi J; Duling MG; Bowers LN; Knepp AK; LeBouf RF; Nurkiewicz TR; Ranpara A; Luxton T; Martin SB; Burns DA; Peloquin DM; Baumann EJ; Virji MA; Stefaniak AB Inhal Toxicol; 2019; 31(13-14):432-445. PubMed ID: 31874579 [No Abstract] [Full Text] [Related]
31. Parameters Influencing the Emission of Ultrafine Particles during 3D Printing. Chýlek R; Kudela L; Pospíšil J; Šnajdárek L Int J Environ Res Public Health; 2021 Nov; 18(21):. PubMed ID: 34770184 [TBL] [Abstract][Full Text] [Related]
32. Unlocking the nanoparticle emission potential: a study of varied filaments in 3D printing. Garcia-Gonzalez H; Lopez-Pola MT Environ Sci Pollut Res Int; 2024 May; 31(21):31188-31200. PubMed ID: 38625471 [TBL] [Abstract][Full Text] [Related]
33. Development and characterization of an exposure platform suitable for physico-chemical, morphological and toxicological characterization of printer-emitted particles (PEPs). Pirela SV; Pyrgiotakis G; Bello D; Thomas T; Castranova V; Demokritou P Inhal Toxicol; 2014 Jun; 26(7):400-8. PubMed ID: 24862974 [TBL] [Abstract][Full Text] [Related]
34. Fume emissions from a low-cost 3-D printer with various filaments. Floyd EL; Wang J; Regens JL J Occup Environ Hyg; 2017 Jul; 14(7):523-533. PubMed ID: 28406364 [TBL] [Abstract][Full Text] [Related]
35. Accurate measurements of particle emissions from a three-dimensional printer using a chamber test with a mixer-installed sampling system. Lee H; Kwak DB; Choi CY; Ahn KH Sci Rep; 2023 Apr; 13(1):6495. PubMed ID: 37081153 [TBL] [Abstract][Full Text] [Related]
36. Particle emissions from fused deposition modeling 3D printers: Evaluation and meta-analysis. Byrley P; George BJ; Boyes WK; Rogers K Sci Total Environ; 2019 Mar; 655():395-407. PubMed ID: 30471608 [TBL] [Abstract][Full Text] [Related]
37. Influence of polymer additives on gas-phase emissions from 3D printer filaments. Potter PM; Al-Abed SR; Hasan F; Lomnicki SM Chemosphere; 2021 Sep; 279():130543. PubMed ID: 33901889 [TBL] [Abstract][Full Text] [Related]
38. VOC Emissions and Formation Mechanisms from Carbon Nanotube Composites during 3D Printing. Potter PM; Al-Abed SR; Lay D; Lomnicki SM Environ Sci Technol; 2019 Apr; 53(8):4364-4370. PubMed ID: 30875473 [TBL] [Abstract][Full Text] [Related]
39. Integrated QSAR and Adverse Outcome Pathway Analysis of Chemicals Released on 3D Printing Using Acrylonitrile Butadiene Styrene. Pandit S; Singh P; Sinha M; Parthasarathi R Chem Res Toxicol; 2021 Feb; 34(2):355-364. PubMed ID: 33416328 [TBL] [Abstract][Full Text] [Related]
40. Toxicology and carcinogenesis study of styrene-acrylonitrile trimer in F344/N rats (perinatal and postnatal feed studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 2012 Jul; (573):1-155. PubMed ID: 22837102 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]