BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35586954)

  • 1. Water-Regulated Mechanisms for Degradation of Pesticides Paraoxon and Parathion by Phosphotriesterase: Insight from QM/MM and MD Simulations.
    Fu Y; Fan F; Wang B; Cao Z
    Chem Asian J; 2022 Jul; 17(14):e202200439. PubMed ID: 35586954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of pesticides diazinon and diazoxon by phosphotriesterase: insight into divergent mechanisms from QM/MM and MD simulations.
    Fu Y; Zhang Y; Fan F; Wang B; Cao Z
    Phys Chem Chem Phys; 2022 Jan; 24(2):687-696. PubMed ID: 34927643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations.
    Wong KY; Gao J
    Biochemistry; 2007 Nov; 46(46):13352-69. PubMed ID: 17966992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MM and MM MD Simulations on Enzymatic Degradation of the Nerve Agent VR by Phosphotriesterase.
    Yu J; Fu Y; Cao Z
    J Phys Chem B; 2023 Aug; 127(34):7462-7471. PubMed ID: 37584503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of the detoxification of paraoxon catalyzed by phosphotriesterase.
    Zhang X; Wu R; Song L; Lin Y; Lin M; Cao Z; Wu W; Mo Y
    J Comput Chem; 2009 Nov; 30(15):2388-401. PubMed ID: 19353598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoselectivity of phosphotriesterase with paraoxon derivatives: a computational study.
    Zhan D; Guan S; Jin H; Han W; Wang S
    J Biomol Struct Dyn; 2016; 34(3):600-11. PubMed ID: 25929154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QM/MM and MM MD simulations on decontamination of the V-type nerve agent VX by phosphotriesterase: toward a comprehensive understanding of steroselectivity and activity.
    Fan F; Zheng Y; Fu Y; Zhang Y; Zheng H; Lyu C; Chen L; Huang J; Cao Z
    Phys Chem Chem Phys; 2022 May; 24(18):10933-10943. PubMed ID: 35466335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolysis of phosphotriesters: a theoretical analysis of the enzymatic and solution mechanisms.
    López-Canut V; Ruiz-Pernía JJ; Castillo R; Moliner V; Tuñón I
    Chemistry; 2012 Jul; 18(31):9612-21. PubMed ID: 22745111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source.
    McLoughlin SY; Jackson C; Liu JW; Ollis DL
    Appl Environ Microbiol; 2004 Jan; 70(1):404-12. PubMed ID: 14711669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the simulant behavior of PNPDPP toward parathion and paraoxon: a computational study.
    Khan AS; Bandyopadhyay T; Ganguly B
    J Mol Graph Model; 2012 Apr; 34():10-7. PubMed ID: 22306410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Base Mechanism to the Hydrolysis of Phosphate Triester Promoted by the Cd
    Chagas MA; Pereira ES; Godinho MPB; Da Silva JCS; Rocha WR
    Inorg Chem; 2018 May; 57(10):5888-5902. PubMed ID: 29746110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paraoxon and parathion hydrolysis by aqueous molybdenocene dichloride (Cp2MoCl2): first reported pesticide hydrolysis by an organometallic complex.
    Kuo LY; Perera NM
    Inorg Chem; 2000 May; 39(10):2103-6. PubMed ID: 12526519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition State Analysis of the Reaction Catalyzed by the Phosphotriesterase from Sphingobium sp. TCM1.
    Bigley AN; Xiang DF; Narindoshvili T; Burgert CW; Hengge AC; Raushel FM
    Biochemistry; 2019 Mar; 58(9):1246-1259. PubMed ID: 30730705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding modes of phosphotriesterase-like lactonase complexed with δ-nonanoic lactone and paraoxon using molecular dynamics simulations.
    Guan S; Zhao L; Jin H; Shan N; Han W; Wang S; Shan Y
    J Biomol Struct Dyn; 2017 Feb; 35(2):273-286. PubMed ID: 26775655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding How Nanoparticle Attachment Enhances Phosphotriesterase Kinetic Efficiency.
    Breger JC; Ancona MG; Walper SA; Oh E; Susumu K; Stewart MH; Deschamps JR; Medintz IL
    ACS Nano; 2015 Aug; 9(8):8491-503. PubMed ID: 26230391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of conformational variability of phosphotriesterase upon N-acyl-L-homoserine lactone and paraoxon binding: insights from molecular dynamics studies.
    Zhan D; Zhou Z; Guan S; Han W
    Molecules; 2013 Dec; 18(12):15501-18. PubMed ID: 24352010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrogation of the Substrate Profile and Catalytic Properties of the Phosphotriesterase from Sphingobium sp. Strain TCM1: An Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants and Plasticizers.
    Xiang DF; Bigley AN; Ren Z; Xue H; Hull KG; Romo D; Raushel FM
    Biochemistry; 2015 Dec; 54(51):7539-49. PubMed ID: 26629649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides.
    Zhang Y; An J; Ye W; Yang G; Qian ZG; Chen HF; Cui L; Feng Y
    Appl Environ Microbiol; 2012 Sep; 78(18):6647-55. PubMed ID: 22798358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highest paraoxonase turnover rate found in a bacterial phosphotriesterase variant.
    Briseño-Roa L; Oliynyk Z; Timperley CM; Griffiths AD; Fersht AR
    Protein Eng Des Sel; 2011 Jan; 24(1-2):209-11. PubMed ID: 20650962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfhydryl-specific PEGylation of phosphotriesterase cysteine mutants for organophosphate detoxification.
    Daffu GK; Lopez P; Katz F; Vinogradov M; Zhan CG; Landry DW; Macdonald J
    Protein Eng Des Sel; 2015 Nov; 28(11):501-6. PubMed ID: 26243887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.