BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35587205)

  • 1. Engineered Tough Silk Hydrogels through Assembling β-Sheet Rich Nanofibers Based on a Solvent Replacement Strategy.
    Zhang X; Xiao L; Ding Z; Lu Q; Kaplan DL
    ACS Nano; 2022 Jul; 16(7):10209-10218. PubMed ID: 35587205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragile-Tough Mechanical Reversion of Silk Materials via Tuning Supramolecular Assembly.
    Zhang X; Xiao L; Ding Z; Lu Q; Kaplan DL
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2337-2345. PubMed ID: 33835795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity.
    Ding Z; Lu G; Cheng W; Xu G; Zuo B; Lu Q; Kaplan DL
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2357-2367. PubMed ID: 33455344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible hydrogel-solution system of silk with high beta-sheet content.
    Bai S; Zhang X; Lu Q; Sheng W; Liu L; Dong B; Kaplan DL; Zhu H
    Biomacromolecules; 2014 Aug; 15(8):3044-51. PubMed ID: 25056606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Mechanical Properties of Silk Fibroin Hydrogel through Restricting the Growth of β-Sheet Domains.
    Su D; Yao M; Liu J; Zhong Y; Chen X; Shao Z
    ACS Appl Mater Interfaces; 2017 May; 9(20):17489-17498. PubMed ID: 28470062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amorphous Silk Nanofiber Solutions for Fabricating Silk-Based Functional Materials.
    Dong X; Zhao Q; Xiao L; Lu Q; Kaplan DL
    Biomacromolecules; 2016 Sep; 17(9):3000-6. PubMed ID: 27476755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic Silk Fibroin Hydrogels with Tunable Strength.
    Yao D; Li M; Wang T; Sun F; Su C; Shi T
    ACS Biomater Sci Eng; 2021 Feb; 7(2):636-647. PubMed ID: 33393282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Silk Protein Hydrogels Made by a Facile One-Step Method and Their Multiple Applications.
    Chen L; Sun L; Yao J; Zhao B; Shao Z; Chen X
    ACS Appl Bio Mater; 2022 Jun; 5(6):3086-3094. PubMed ID: 35608071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel two-step method to form silk fibroin fibrous hydrogel.
    Ming J; Li M; Han Y; Chen Y; Li H; Zuo B; Pan F
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():185-192. PubMed ID: 26652363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous Silk Fibroin Nanofiber Hydrogels with Enhanced Mechanical Properties.
    Liu J; Ding Z; Lu G; Wang J; Wang L; Lu Q
    Macromol Biosci; 2019 Dec; 19(12):e1900326. PubMed ID: 31738015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk fibroin H-fibroin/poly(ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release.
    Wang Z; Song X; Cui Y; Cheng K; Tian X; Dong M; Liu L
    J Colloid Interface Sci; 2021 Jul; 593():142-151. PubMed ID: 33744525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic Silk Fibroin Hydrogels Strengthened by Silica Nanoparticles Distributed Nanofibers Facilitate Bone Repair.
    Cheng Y; Cheng G; Xie C; Yin C; Dong X; Li Z; Zhou X; Wang Q; Deng H; Li Z
    Adv Healthc Mater; 2021 May; 10(9):e2001646. PubMed ID: 33694330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk scaffolds with tunable mechanical capability for cell differentiation.
    Bai S; Han H; Huang X; Xu W; Kaplan DL; Zhu H; Lu Q
    Acta Biomater; 2015 Jul; 20():22-31. PubMed ID: 25858557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Tough, Stretchable, and Enzymatically Degradable Hydrogels Modulated by Bioinspired Hydrophobic β-Sheet Peptides.
    Xiang Y; Zhang J; Mao H; Yan Z; Wang X; Bao C; Zhu L
    Biomacromolecules; 2021 Nov; 22(11):4846-4856. PubMed ID: 34706536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels.
    Hu X; Lu Q; Sun L; Cebe P; Wang X; Zhang X; Kaplan DL
    Biomacromolecules; 2010 Nov; 11(11):3178-88. PubMed ID: 20942397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Training-Driven Structural Remodeling: A Rational Route for Outstanding Highly Hydrated Silk Materials.
    Shu T; Lv Z; Chen CT; Gu GX; Ren J; Cao L; Pei Y; Ling S; Kaplan DL
    Small; 2021 Aug; 17(33):e2102660. PubMed ID: 34288406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Birefringent Silk Fibroin Hydrogel Constructed via Binary Solvent-Exchange-Induced Self-Assembly.
    Shu T; Zheng K; Zhang Z; Ren J; Wang Z; Pei Y; Yeo J; Gu GX; Ling S
    Biomacromolecules; 2021 May; 22(5):1955-1965. PubMed ID: 33646768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Nanofiber Reinforced Nonmulberry Silk Protein Fibroin Nanobiocomposite for Tissue Engineering Applications.
    Naskar D; Bhattacharjee P; Ghosh AK; Mandal M; Kundu SC
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19356-19370. PubMed ID: 27523165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
    Kapoor S; Kundu SC
    Acta Biomater; 2016 Feb; 31():17-32. PubMed ID: 26602821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk granular hydrogels self-reinforced with regenerated silk fibroin fibers.
    Wyss CS; Karami P; Demongeot A; Bourban PE; Pioletti DP
    Soft Matter; 2021 Jul; 17(29):7038-7046. PubMed ID: 34251015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.