BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35587234)

  • 1. Rapid-cycling Brassica rapa evolves even earlier flowering under experimental drought.
    Johnson SE; Hamann E; Franks SJ
    Am J Bot; 2022 Nov; 109(11):1683-1692. PubMed ID: 35587234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid, parallel evolution of field mustard (Brassica rapa) under experimental drought.
    Johnson SE; Hamann E; Franks SJ
    Evolution; 2022 Feb; 76(2):262-274. PubMed ID: 34878171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two decades of evolutionary changes in Brassica rapa in response to fluctuations in precipitation and severe drought.
    Hamann E; Weis AE; Franks SJ
    Evolution; 2018 Dec; 72(12):2682-2696. PubMed ID: 30478889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools.
    Franks SJ; Kane NC; O'Hara NB; Tittes S; Rest JS
    Mol Ecol; 2016 Aug; 25(15):3622-31. PubMed ID: 27072809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa.
    Franks SJ
    New Phytol; 2011 Apr; 190(1):249-257. PubMed ID: 21210818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation.
    Franks SJ; Sim S; Weis AE
    Proc Natl Acad Sci U S A; 2007 Jan; 104(4):1278-82. PubMed ID: 17220273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid, nonparallel genomic evolution of Brassica rapa (field mustard) under experimental drought.
    Johnson SE; Tittes S; Franks SJ
    J Evol Biol; 2023 Mar; 36(3):550-562. PubMed ID: 36721268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased susceptibility to fungal disease accompanies adaptation to drought in Brassica rapa.
    O'Hara NB; Rest JS; Franks SJ
    Evolution; 2016 Jan; 70(1):241-8. PubMed ID: 26648585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant.
    Franks SJ; Weis AE
    J Evol Biol; 2008 Sep; 21(5):1321-34. PubMed ID: 18557796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of pathogen response genes associated with increased disease susceptibility during adaptation to an extreme drought in a Brassica rapa plant population.
    O'Hara NB; Franks SJ; Kane NC; Tittes S; Rest JS
    BMC Ecol Evol; 2021 Apr; 21(1):61. PubMed ID: 33882815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A resurrection study reveals limited evolution of phenology in response to recent climate change across the geographic range of the scarlet monkeyflower.
    Vtipil EE; Sheth SN
    Ecol Evol; 2020 Dec; 10(24):14165-14177. PubMed ID: 33391707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid evolutionary changes in gene expression in response to climate fluctuations.
    Hamann E; Pauli CS; Joly-Lopez Z; Groen SC; Rest JS; Kane NC; Purugganan MD; Franks SJ
    Mol Ecol; 2021 Jan; 30(1):193-206. PubMed ID: 32761923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tests for the joint evolution of mating system and drought escape in Mimulus.
    Ivey CT; Carr DE
    Ann Bot; 2012 Feb; 109(3):583-98. PubMed ID: 21831854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus.
    Kooyers NJ; Greenlee AB; Colicchio JM; Oh M; Blackman BK
    New Phytol; 2015 Apr; 206(1):152-165. PubMed ID: 25407964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary and plastic changes in a native annual plant after a historic drought.
    Lambrecht SC; Gujral AK; Renshaw LJ; Rosengreen LT
    Ecol Evol; 2020 Jun; 10(11):4570-4582. PubMed ID: 32551044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ (13)C), and WUE plasticity to drought in Arabidopsis thaliana.
    Kenney AM; McKay JK; Richards JH; Juenger TE
    Ecol Evol; 2014 Dec; 4(23):4505-21. PubMed ID: 25512847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population responses to a historic drought across the range of the common monkeyflower (Mimulus guttatus).
    Kooyers NJ; Morioka KA; Colicchio JM; Clark KS; Donofrio A; Estill SK; Pascualy CR; Anderson IC; Hagler M; Cho C; Blackman BK
    Am J Bot; 2021 Feb; 108(2):284-296. PubMed ID: 33400274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of plant drought strategies and herbivore tolerance after two decades of climate change.
    Rauschkolb R; Li Z; Godefroid S; Dixon L; Durka W; Májeková M; Bossdorf O; Ensslin A; Scheepens JF
    New Phytol; 2022 Jul; 235(2):773-785. PubMed ID: 35357713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resurrected seeds from herbarium specimens reveal rapid evolution of drought resistance in a selfing annual.
    Christie K; Pierson NR; Holeski LM; Lowry DB
    Am J Bot; 2023 Dec; 110(12):e16265. PubMed ID: 38102863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The adaptive significance of drought escape in Avena barbata, an annual grass.
    Sherrard ME; Maherali H
    Evolution; 2006 Dec; 60(12):2478-89. PubMed ID: 17263110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.