These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35587354)

  • 1. Contrast sensitivity functions in autoencoders.
    Li Q; Gomez-Villa A; Bertalmío M; Malo J
    J Vis; 2022 May; 22(6):8. PubMed ID: 35587354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Color illusions also deceive CNNs for low-level vision tasks: Analysis and implications.
    Gomez-Villa A; Martín A; Vazquez-Corral J; Bertalmío M; Malo J
    Vision Res; 2020 Nov; 176():156-174. PubMed ID: 32896717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional neural networks trained with a developmental sequence of blurry to clear images reveal core differences between face and object processing.
    Jang H; Tong F
    J Vis; 2021 Nov; 21(12):6. PubMed ID: 34767621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training for object recognition with increasing spatial frequency: A comparison of deep learning with human vision.
    Avberšek LK; Zeman A; Op de Beeck H
    J Vis; 2021 Sep; 21(10):14. PubMed ID: 34533580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Model Composed of Two Convolutional Neural Networks (CNNs) for Automatic Retinal Layer Segmentation of OCT Images in Retinitis Pigmentosa (RP).
    Wang YZ; Wu W; Birch DG
    Transl Vis Sci Technol; 2021 Nov; 10(13):9. PubMed ID: 34751740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of natural images from responses of primate retinal ganglion cells.
    Brackbill N; Rhoades C; Kling A; Shah NP; Sher A; Litke AM; Chichilnisky EJ
    Elife; 2020 Nov; 9():. PubMed ID: 33146609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Words as a window: Using word embeddings to explore the learned representations of Convolutional Neural Networks.
    Dharmaretnam D; Foster C; Fyshe A
    Neural Netw; 2021 May; 137():63-74. PubMed ID: 33556802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application.
    Papandrianos N; Papageorgiou E; Anagnostis A; Papageorgiou K
    PLoS One; 2020; 15(8):e0237213. PubMed ID: 32797099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contextual associations represented both in neural networks and human behavior.
    Aminoff EM; Baror S; Roginek EW; Leeds DD
    Sci Rep; 2022 Apr; 12(1):5570. PubMed ID: 35368046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images.
    Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ
    Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Convolutional Neural Network-based Model of Neural Pathways in the Retina
    Zamani Y; Nategh N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6906-6909. PubMed ID: 31947427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing Fine Structures of the Retinal Receptive Field by Deep-Learning Networks.
    Yan Q; Zheng Y; Jia S; Zhang Y; Yu Z; Chen F; Tian Y; Huang T; Liu JK
    IEEE Trans Cybern; 2022 Jan; 52(1):39-50. PubMed ID: 32167923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-space approximated convolutional neural networks for retinal vessel segmentation.
    Noh KJ; Park SJ; Lee S
    Comput Methods Programs Biomed; 2019 Sep; 178():237-246. PubMed ID: 31416552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Convolutional Neural Networks-Based Approach for Texture Directionality Detection.
    Kociołek M; Kozłowski M; Cardone A
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling spatial contrast sensitivity functions for chromatic and luminance-modulated gratings.
    Rovamo JM; Kankaanpää MI; Kukkonen H
    Vision Res; 1999 Jul; 39(14):2387-98. PubMed ID: 10367059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lumen Segmentation in Optical Coherence Tomography Images using Convolutional Neural Network.
    Miyagawa M; Costa MGF; Gutierrez MA; Costa JPGF; Filho CFFC
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():600-603. PubMed ID: 30440468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.
    Huang J; Wang S; Zhou G; Hu W; Yu G
    Magn Reson Imaging; 2022 Apr; 87():38-46. PubMed ID: 34968699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of retinal nonperfusion area in fluorescein angiography in retinal vein occlusion using convolutional neural networks.
    Tang Z; Zhang X; Yang G; Zhang G; Gong Y; Zhao K; Xie J; Hou J; Hou J; Sun B; Wang Z
    Med Phys; 2021 Feb; 48(2):648-658. PubMed ID: 33300143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.