BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35587491)

  • 1. Testimony on a successful lab protocol to disrupt Chlorella vulgaris microalga cell wall.
    Lopes PA; Coelho D; Prates JAM
    PLoS One; 2022; 17(5):e0268565. PubMed ID: 35587491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall.
    Coelho D; Lopes PA; Cardoso V; Ponte P; Brás J; Madeira MS; Alfaia CM; Bandarra NM; Gerken HG; Fontes CMGA; Prates JAM
    Sci Rep; 2019 Mar; 9(1):5382. PubMed ID: 30926940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-enzyme constituted mixture to improve the degradation of Arthrospira platensis microalga cell wall for monogastric diets.
    Coelho D; Lopes PA; Cardoso V; Ponte P; Brás J; Madeira MS; Alfaia CM; Bandarra NM; Fontes CMGA; Prates JAM
    J Anim Physiol Anim Nutr (Berl); 2020 Jan; 104(1):310-321. PubMed ID: 31680348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of dietary Chlorella vulgaris and carbohydrate-active enzymes on growth performance, meat quality and lipid composition of broiler chickens.
    Alfaia CM; Pestana JM; Rodrigues M; Coelho D; Aires MJ; Ribeiro DM; Major VT; Martins CF; Santos H; Lopes PA; Lemos JPC; Fontes CMGA; Lordelo MM; Prates JAM
    Poult Sci; 2021 Feb; 100(2):926-937. PubMed ID: 33518146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed electric field (PEF) processing of microalga Chlorella vulgaris and its digestibility in broiler feed.
    Van Nerom S; Buyse K; Van Immerseel F; Robbens J; Delezie E
    Poult Sci; 2024 Jun; 103(6):103721. PubMed ID: 38613915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of dietary Chlorella vulgaris and carbohydrate-active enzymes incorporation on plasma metabolites and liver lipid composition of broilers.
    Coelho DFM; Alfaia CMRPM; Assunção JMP; Costa M; Pinto RMA; de Andrade Fontes CMG; Lordelo MM; Prates JAM
    BMC Vet Res; 2021 Jun; 17(1):229. PubMed ID: 34187475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dietary incorporation of Chlorella vulgaris and CAZyme supplementation on the hepatic proteome of finishing pigs.
    Ribeiro DM; Coelho D; Osório H; Martins C; Bengala Freire JP; Almeida J; Moreira O; Almeida AM; Prates JAM
    J Proteomics; 2022 Mar; 256():104504. PubMed ID: 35101639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.
    Alam MA; Wan C; Guo SL; Zhao XQ; Huang ZY; Yang YL; Chang JS; Bai FW
    J Biosci Bioeng; 2014 Jul; 118(1):29-33. PubMed ID: 24507901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into cell wall disintegration of Chlorella vulgaris.
    Weber S; Grande PM; Blank LM; Klose H
    PLoS One; 2022; 17(1):e0262500. PubMed ID: 35030225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella.
    Cheng YS; Labavitch JM; VanderGheynst JS
    Lett Appl Microbiol; 2015 Jan; 60(1):1-7. PubMed ID: 25163669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production.
    Gerken HG; Donohoe B; Knoshaug EP
    Planta; 2013 Jan; 237(1):239-53. PubMed ID: 23011569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris.
    Hultberg M; Jönsson HL; Bergstrand KJ; Carlsson AS
    Bioresour Technol; 2014 May; 159():465-7. PubMed ID: 24718357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorella vulgaris microalgae and/or copper supplementation enhanced feed intake, nutrient digestibility, ruminal fermentation, blood metabolites and lactational performance of Boer goat.
    Kholif AE; Hamdon HA; Kassab AY; Farahat ESA; Azzaz HH; Matloup OH; Mohamed AG; Anele UY
    J Anim Physiol Anim Nutr (Berl); 2020 Nov; 104(6):1595-1605. PubMed ID: 32388911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving protein production of indigenous microalga Chlorella vulgaris FSP-E by photobioreactor design and cultivation strategies.
    Chen CY; Lee PJ; Tan CH; Lo YC; Huang CC; Show PL; Lin CH; Chang JS
    Biotechnol J; 2015 Jun; 10(6):905-14. PubMed ID: 25865941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating eco-technological approach for textile dye effluent treatment and carbon dioxide capturing from unicellular microalga
    Tamil Selvan S; Dakshinamoorthi BM; Chandrasekaran R; Muthusamy S; Ramamurthy D; Balasundaram S
    Int J Phytoremediation; 2023; 25(4):466-482. PubMed ID: 35790387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive GCMS and LC-MS/MS Metabolite Profiling of
    Pantami HA; Ahamad Bustamam MS; Lee SY; Ismail IS; Mohd Faudzi SM; Nakakuni M; Shaari K
    Mar Drugs; 2020 Jul; 18(7):. PubMed ID: 32709006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.
    Kim KH; Choi IS; Kim HM; Wi SG; Bae HJ
    Bioresour Technol; 2014 Feb; 153():47-54. PubMed ID: 24333701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of the biomass pretreatment and simulated gastrointestinal digestion on the digestibility and antioxidant activity of microalgae Chlorella vulgaris and Tetraselmis chuii.
    Paterson S; Majchrzak M; Alexandru D; Di Bella S; Fernández-Tomé S; Arranz E; de la Fuente MA; Gómez-Cortés P; Hernández-Ledesma B
    Food Chem; 2024 Sep; 453():139686. PubMed ID: 38788650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An individual alginate lyase is effective in the disruption of Laminaria digitata recalcitrant cell wall.
    Costa M; Pio L; Bule P; Cardoso V; Alfaia CM; Coelho D; Brás J; Fontes CMGA; Prates JAM
    Sci Rep; 2021 May; 11(1):9706. PubMed ID: 33958695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.