These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35587777)

  • 21. Ion current rectification at nanopores in glass membranes.
    White HS; Bund A
    Langmuir; 2008 Mar; 24(5):2212-8. PubMed ID: 18225931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gate manipulation of DNA capture into nanopores.
    He Y; Tsutsui M; Fan C; Taniguchi M; Kawai T
    ACS Nano; 2011 Oct; 5(10):8391-7. PubMed ID: 21928773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA capture into a nanopore: interplay of diffusion and electrohydrodynamics.
    Grosberg AY; Rabin Y
    J Chem Phys; 2010 Oct; 133(16):165102. PubMed ID: 21033823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrokinetic translocation of a deformable nanoparticle controlled by field effect in nanopores.
    He X; Wang P; Shi L; Zhou T; Wen L
    Electrophoresis; 2021 Nov; 42(21-22):2197-2205. PubMed ID: 34409625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular switch for tuning ions across nanopores by an external electric field.
    Gong X; Li J; Guo C; Xu K; Yang H
    Nanotechnology; 2013 Jan; 24(2):025502. PubMed ID: 23237863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of electroosmotic flow through nanoporous self-assembled arrays.
    Bell K; Gomes M; Nazemifard N
    Electrophoresis; 2015 Aug; 36(15):1738-43. PubMed ID: 25964193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example.
    Bhamidimarri SP; Prajapati JD; van den Berg B; Winterhalter M; Kleinekathöfer U
    Biophys J; 2016 Feb; 110(3):600-611. PubMed ID: 26840725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.
    Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A
    Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Particle Capture in Solid-State Multipores.
    Tsutsui M; Yokota K; Nakada T; Arima A; Tonomura W; Taniguchi M; Washio T; Kawai T
    ACS Sens; 2018 Dec; 3(12):2693-2701. PubMed ID: 30421923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroosmosis-Driven Nanofluidic Diodes.
    Leong IW; Tsutsui M; Murayama S; He Y; Taniguchi M
    J Phys Chem B; 2020 Aug; 124(32):7086-7092. PubMed ID: 32701281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the origins of conductive pulse sensing inside a nanopore.
    Lastra LS; Bandara YMNDY; Nguyen M; Farajpour N; Freedman KJ
    Nat Commun; 2022 May; 13(1):2186. PubMed ID: 35562332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-chamber electroosmosis using textile reinforced agar membranes--A promising concept for the future of hemodialysis.
    Kofler M; Lenninger M; Mayer G; Neuwirt H; Grimm M; Bechtold T
    Carbohydr Polym; 2016 Jan; 136():81-6. PubMed ID: 26572331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-voltage efficient electroosmotic pumps with ultrathin silica nanoporous membrane.
    Yang Q; Su B; Wang Y; Wu W
    Electrophoresis; 2019 Aug; 40(16-17):2149-2156. PubMed ID: 30916400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative model for predicting the electroosmotic flow in dual-pole nanochannels.
    Khosravikia M
    Electrophoresis; 2023 Apr; 44(7-8):733-743. PubMed ID: 36808619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein Transport through Nanopores Illuminated by Long-Time-Scale Simulations.
    Mitscha-Baude G; Stadlbauer B; Howorka S; Heitzinger C
    ACS Nano; 2021 Jun; 15(6):9900-9912. PubMed ID: 34096722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electric control of ionic transport in sub-nm nanopores.
    Ji A; Chen Y
    RSC Adv; 2021 Apr; 11(23):13806-13813. PubMed ID: 35423930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrokinetic particle translocation through a nanopore containing a floating electrode.
    Zhang M; Ai Y; Sharma A; Joo SW; Kim DS; Qian S
    Electrophoresis; 2011 Jul; 32(14):1864-74. PubMed ID: 21710551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.