BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 35588272)

  • 1. Insights in the Complex DegU, DegS, and Spo0A Regulation System of Paenibacillus polymyxa by CRISPR-Cas9-Based Targeted Point Mutations.
    Meliawati M; May T; Eckerlin J; Heinrich D; Herold A; Schmid J
    Appl Environ Microbiol; 2022 Jun; 88(11):e0016422. PubMed ID: 35588272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9-Mediated Genome Editing in Paenibacillus polymyxa.
    Ravagnan G; Meliawati M; Schmid J
    Methods Mol Biol; 2024; 2760():267-280. PubMed ID: 38468094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9-mediated Large Cluster Deletion and Multiplex Genome Editing in
    Meliawati M; Teckentrup C; Schmid J
    ACS Synth Biol; 2022 Jan; 11(1):77-84. PubMed ID: 34914351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization and characterization of spore morphogenesis in Paenibacillus polymyxa ATCC39564.
    Abe K; Kato H; Hasegawa Y; Yamamoto T; Nomura N; Obana N
    J Gen Appl Microbiol; 2022 Sep; 68(2):79-86. PubMed ID: 35418538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of the 2,3-butanediol pathway of Paenibacillus polymyxa DSM 365.
    Schilling C; Ciccone R; Sieber V; Schmid J
    Metab Eng; 2020 Sep; 61():381-388. PubMed ID: 32771627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusaricidin Biosynthesis Is Controlled via a KinB-Spo0A-AbrB Signal Pathway in
    Li Y; Zhang H; Li Y; Chen S
    Mol Plant Microbe Interact; 2021 Dec; 34(12):1378-1389. PubMed ID: 34890249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single amino acid mutation in Spo0A results in sporulation deficiency of Paenibacillus polymyxa SC2.
    Hou X; Yu X; Du B; Liu K; Yao L; Zhang S; Selin C; Fernando WG; Wang C; Ding Y
    Res Microbiol; 2016; 167(6):472-9. PubMed ID: 27208661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abh, AbrB3, and Spo0A play distinct regulatory roles during polymyxin synthesis in
    Cui Y; Zhao D; Liu K; Mei X; Sun S; Du B; Ding Y
    Microbiol Spectr; 2024 Jan; 12(1):e0229323. PubMed ID: 38054717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of sporulation histidine kinases of Paenibacillus polymyxa.
    Park SY; Park SH; Choi SK
    Res Microbiol; 2012 May; 163(4):272-8. PubMed ID: 22391390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailor-made exopolysaccharides-CRISPR-Cas9 mediated genome editing in
    Rütering M; Cress BF; Schilling M; Rühmann B; Koffas MAG; Sieber V; Schmid J
    Synth Biol (Oxf); 2017 Jan; 2(1):ysx007. PubMed ID: 32995508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the carbon and redox metabolism of Paenibacillus polymyxa for efficient isobutanol production.
    Meliawati M; Volke DC; Nikel PI; Schmid J
    Microb Biotechnol; 2024 Mar; 17(3):e14438. PubMed ID: 38529712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of the Levansucrase Gene in Paenibacillus polymyxa DSM 365 Diminishes Exopolysaccharide Biosynthesis during 2,3-Butanediol Fermentation.
    Okonkwo CC; Ujor V; Cornish K; Ezeji TC
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32144108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulator DegU is required for multicellular behavior in Lysinibacillus sphaericus.
    Hu Y; Cai Q; Tian S; Ge Y; Yuan Z; Hu X
    Res Microbiol; 2018 Apr; 169(3):177-187. PubMed ID: 29378340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Fnr Paralogs in Controlling Anaerobic Metabolism in the Diazotroph Paenibacillus polymyxa WLY78.
    Shi H; Li Y; Hao T; Liu X; Zhao X; Chen S
    Appl Environ Microbiol; 2020 May; 86(10):. PubMed ID: 32198173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics.
    Mäder U; Antelmann H; Buder T; Dahl MK; Hecker M; Homuth G
    Mol Genet Genomics; 2002 Dec; 268(4):455-67. PubMed ID: 12471443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Prokaryotic CRISPR-Cas12a-Based Tool for Programmable Transcriptional Activation and Repression.
    Schilling C; Koffas MAG; Sieber V; Schmid J
    ACS Synth Biol; 2020 Dec; 9(12):3353-3363. PubMed ID: 33238093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simplified Method for Gene Knockout and Direct Screening of Recombinant Clones for Application in Paenibacillus polymyxa.
    Kim SB; Timmusk S
    PLoS One; 2013; 8(6):e68092. PubMed ID: 23826364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered phosphorylation of Bacillus subtilis DegU caused by single amino acid changes in DegS.
    Tanaka T; Kawata M; Mukai K
    J Bacteriol; 1991 Sep; 173(17):5507-15. PubMed ID: 1909319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis.
    Dahl MK; Msadek T; Kunst F; Rapoport G
    J Biol Chem; 1992 Jul; 267(20):14509-14. PubMed ID: 1321152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of promoter sequences for the secretory production of a Clostridium thermocellum cellulase in Paenibacillus polymyxa.
    Heinze S; Zimmermann K; Ludwig C; Heinzlmeir S; Schwarz WH; Zverlov VV; Liebl W; Kornberger P
    Appl Microbiol Biotechnol; 2018 Dec; 102(23):10147-10159. PubMed ID: 30259100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.