These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 35588477)
1. Rational Design of Space-Confined Mn-Based Heterostructures with Synergistic Interfacial Charge Transport and Structural Integrity for Lithium Storage. Zhang X; He X; Yin S; Cai W; Wang Q; Wu H; Wu K; Zhang Y Inorg Chem; 2022 May; 61(21):8366-8378. PubMed ID: 35588477 [TBL] [Abstract][Full Text] [Related]
2. Hierarchically Porous N,S-Codoped Carbon-Embedded Dual Phase MnO/MnS Nanoparticles for Efficient Lithium Ion Storage. Wang Y; Wu H; Huang L; Zhao H; Liu Z; Chen X; Liu H; Zhang Y Inorg Chem; 2018 Jul; 57(13):7993-8001. PubMed ID: 29883121 [TBL] [Abstract][Full Text] [Related]
3. Metal-Organic Framework-Derived Hierarchical MnO/Co with Oxygen Vacancies toward Elevated-Temperature Li-Ion Battery. Lin J; Zeng C; Lin X; Xu C; Xu X; Luo Y ACS Nano; 2021 Mar; 15(3):4594-4607. PubMed ID: 33606517 [TBL] [Abstract][Full Text] [Related]
4. Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries. Guo D; Xu Y; Xu J; Guo K; Wu N; Cao A; Liu G; Liu X Molecules; 2024 May; 29(10):. PubMed ID: 38792090 [TBL] [Abstract][Full Text] [Related]
5. Interfacial Coupling SnSe Feng W; Wen X; Wang Y; Song L; Li X; Du R; Yang J; Li H; He J; Shi J Adv Sci (Weinh); 2023 Jan; 10(2):e2204671. PubMed ID: 36398606 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of MnO-Sn cubes embedding in nitrogen-doped carbon nanofibers with high lithium-ion storage performance. Lu L; Zhang B; Song J; Gao H; Wu Z; Shen H; Li Y; Lei W; Hao Q Nanotechnology; 2021 Dec; 33(11):. PubMed ID: 34874284 [TBL] [Abstract][Full Text] [Related]
7. Nanocapsule of MnS Nanopolyhedron Core@CoS Nanoparticle/Carbon Shell@Pure Carbon Shell as Anode Material for High-Performance Lithium Storage. Yang P; Yuan Y; Zhang D; Yang Q; Guo S; Cheng J Molecules; 2023 Jan; 28(2):. PubMed ID: 36677954 [TBL] [Abstract][Full Text] [Related]
8. Heterostructured SnO Li H; Zhang B; Wang X; Zhang J; An T; Ding Z; Yu W; Tong H Front Chem; 2019; 7():339. PubMed ID: 31139622 [TBL] [Abstract][Full Text] [Related]
9. Concisely Constructing S, F Co-Modified MnO Nanoparticles Attached to S, N Co-Doped Carbon Skeleton as a High-Rate Performance Anode Material. Zhang D; Zhang C; Huo Z; Sun J; Liu G; Liu X; Yu C Molecules; 2024 Sep; 29(18):. PubMed ID: 39339300 [TBL] [Abstract][Full Text] [Related]
10. Sulfur-bridged bonds enabled structure modulation and space confinement of MnS for superior sodium-ion capacitors. Chen Y; Li S; Chen J; Gao L; Guo P; Wei C; Fu J; Xu Q J Colloid Interface Sci; 2024 Jun; 664():360-370. PubMed ID: 38479272 [TBL] [Abstract][Full Text] [Related]
11. Design and Construction of Carbon-Coated Fe Liu H; Zhang W; Wang W; Han G; Zhang J; Zhang S; Wang J; Du Y Small; 2023 Dec; 19(52):e2304264. PubMed ID: 37661567 [TBL] [Abstract][Full Text] [Related]
12. Ultrasmall MnO Nanoparticles Supported on Nitrogen-Doped Carbon Nanotubes as Efficient Anode Materials for Sodium Ion Batteries. He Y; Xu P; Zhang B; Du Y; Song B; Han X; Peng H ACS Appl Mater Interfaces; 2017 Nov; 9(44):38401-38408. PubMed ID: 29035034 [TBL] [Abstract][Full Text] [Related]
13. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Zheng F; Xia G; Yang Y; Chen Q Nanoscale; 2015 Jun; 7(21):9637-45. PubMed ID: 25955439 [TBL] [Abstract][Full Text] [Related]
14. Facile fabrication of 3D porous MnO@GS/CNT architecture as advanced anode materials for high-performance lithium-ion battery. Wang J; Deng Q; Li M; Wu C; Jiang K; Hu Z; Chu J Nanotechnology; 2018 Aug; 29(31):315403. PubMed ID: 29757153 [TBL] [Abstract][Full Text] [Related]
15. Sulfur-Bridged Bonds Boost the Conversion Reaction of the Flexible Self-Supporting MnS@MXene@CNF Anode for High-Rate and Long-Life Lithium-Ion Batteries. Zeng Q; Tian S; Liu G; Yang H; Sun X; Wang D; Huang J; Yan D; Peng S ACS Appl Mater Interfaces; 2022 Feb; 14(5):6958-6966. PubMed ID: 35080865 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Lithium Storage Performance: Dual-Modified Electrospun Si@MnO@CNFs Composites for Advanced Anodes. Zhang R; Jia F; Sun C; Pan J; Wang F; Sang J; Gao C; Li S; Wang Q ACS Appl Mater Interfaces; 2024 Jul; 16(29):38028-38040. PubMed ID: 38992338 [TBL] [Abstract][Full Text] [Related]
17. Top-Down Strategy to Synthesize Mesoporous Dual Carbon Armored MnO Nanoparticles for Lithium-Ion Battery Anodes. Zhang W; Li J; Zhang J; Sheng J; He T; Tian M; Zhao Y; Xie C; Mai L; Mu S ACS Appl Mater Interfaces; 2017 Apr; 9(14):12680-12686. PubMed ID: 28333439 [TBL] [Abstract][Full Text] [Related]
18. Construction of N-doped carbon encapsulated Mn Liu X; Liu Y; Jin M; Xu C; Tian Y; Zhou M; Wang W; Li G; Hou Z; Chen L J Colloid Interface Sci; 2024 Jul; 665():752-763. PubMed ID: 38554465 [TBL] [Abstract][Full Text] [Related]
19. The Enhanced Lithium-Storage Performance for MnO Nanoparticles Anchored on Electrospun Nitrogen-Doped Carbon Fibers. Zhang R; Dong X; Peng L; Kang W; Li H Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30227650 [TBL] [Abstract][Full Text] [Related]
20. Polymerization inspired synthesis of MnO@carbon nanowires with long cycling stability for lithium ion battery anodes: growth mechanism and electrochemical performance. Zhou F; Li S; Han K; Li Y; Liu YN Dalton Trans; 2021 Jan; 50(2):535-545. PubMed ID: 33337455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]