These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35588611)
1. Trimethylamine N-oxide reduction is related to probiotic strain specificity: A systematic review. Cantero MA; Guedes MRA; Fernandes R; Lollo PCB Nutr Res; 2022 Aug; 104():29-35. PubMed ID: 35588611 [TBL] [Abstract][Full Text] [Related]
2. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Qiu L; Tao X; Xiong H; Yu J; Wei H Food Funct; 2018 Aug; 9(8):4299-4309. PubMed ID: 30039147 [TBL] [Abstract][Full Text] [Related]
3. Qiu L; Yang D; Tao X; Yu J; Xiong H; Wei H J Microbiol Biotechnol; 2017 Aug; 27(8):1491-1499. PubMed ID: 28511293 [TBL] [Abstract][Full Text] [Related]
4. Modulation of Circulating Trimethylamine N-Oxide Concentrations by Dietary Supplements and Pharmacological Agents: A Systematic Review. Kalagi NA; Abbott KA; Alburikan KA; Alkofide HA; Stojanovski E; Garg ML Adv Nutr; 2019 Sep; 10(5):876-887. PubMed ID: 31073588 [TBL] [Abstract][Full Text] [Related]
5. Wang Q; Guo M; Liu Y; Xu M; Shi L; Li X; Zhao J; Zhang H; Wang G; Chen W Nutrients; 2022 Mar; 14(6):. PubMed ID: 35334879 [TBL] [Abstract][Full Text] [Related]
7. Molecular Identification and Selection of Probiotic Strains Able to Reduce the Serum TMAO Level in Mice Challenged with Choline. Ramireddy L; Tsen HY; Chiang YC; Hung CY; Wu SR; Young SL; Lin JS; Huang CH; Chiu SH; Chen CC; Chen CC Foods; 2021 Nov; 10(12):. PubMed ID: 34945482 [TBL] [Abstract][Full Text] [Related]
8. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Zhen J; Zhou Z; He M; Han HX; Lv EH; Wen PB; Liu X; Wang YT; Cai XC; Tian JQ; Zhang MY; Xiao L; Kang XX Front Endocrinol (Lausanne); 2023; 14():1085041. PubMed ID: 36824355 [TBL] [Abstract][Full Text] [Related]
9. Gut microbiota-derived trimethylamine-N-oxide: A bridge between dietary fatty acid and cardiovascular disease? He M; Tan CP; Xu YJ; Liu Y Food Res Int; 2020 Dec; 138(Pt B):109812. PubMed ID: 33288187 [TBL] [Abstract][Full Text] [Related]
10. Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: An open-label, randomized study. Tripolt NJ; Leber B; Triebl A; Köfeler H; Stadlbauer V; Sourij H Atherosclerosis; 2015 Sep; 242(1):141-4. PubMed ID: 26188537 [TBL] [Abstract][Full Text] [Related]
11. Effects of probiotic supplementation on serum trimethylamine-N-oxide level and gut microbiota composition in young males: a double-blinded randomized controlled trial. Chen S; Jiang PP; Yu D; Liao GC; Wu SL; Fang AP; Chen PY; Wang XY; Luo Y; Long JA; Zhong RH; Liu ZY; Li CL; Zhang DM; Zhu HL Eur J Nutr; 2021 Mar; 60(2):747-758. PubMed ID: 32440731 [TBL] [Abstract][Full Text] [Related]
12. Impact of probiotic supplementation on trimethylamine N-oxide (TMAO) in humans: A systematic review and meta-analysis of randomized controlled trials. Sohouli MH; Ozovanu OD; Fatahi S; Hekmatdoost A Clin Nutr ESPEN; 2022 Aug; 50():56-62. PubMed ID: 35871952 [TBL] [Abstract][Full Text] [Related]
13. Effect of Choline Forms and Gut Microbiota Composition on Trimethylamine- Cho CE; Aardema NDJ; Bunnell ML; Larson DP; Aguilar SS; Bergeson JR; Malysheva OV; Caudill MA; Lefevre M Nutrients; 2020 Jul; 12(8):. PubMed ID: 32722424 [TBL] [Abstract][Full Text] [Related]
14. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis. Li D; Lu Y; Yuan S; Cai X; He Y; Chen J; Wu Q; He D; Fang A; Bo Y; Song P; Bogaert D; Tsilidis K; Larsson SC; Yu H; Zhu H; Theodoratou E; Zhu Y; Li X Am J Clin Nutr; 2022 Jul; 116(1):230-243. PubMed ID: 35348578 [TBL] [Abstract][Full Text] [Related]
15. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. Romano KA; Vivas EI; Amador-Noguez D; Rey FE mBio; 2015 Mar; 6(2):e02481. PubMed ID: 25784704 [TBL] [Abstract][Full Text] [Related]
16. Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Din AU; Hassan A; Zhu Y; Yin T; Gregersen H; Wang G Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9217-9228. PubMed ID: 31655880 [TBL] [Abstract][Full Text] [Related]
17. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Schiattarella GG; Sannino A; Toscano E; Giugliano G; Gargiulo G; Franzone A; Trimarco B; Esposito G; Perrino C Eur Heart J; 2017 Oct; 38(39):2948-2956. PubMed ID: 29020409 [TBL] [Abstract][Full Text] [Related]
18. The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, L-carnitine and related precursors by the human gut microbiota. Day-Walsh P; Shehata E; Saha S; Savva GM; Nemeckova B; Speranza J; Kellingray L; Narbad A; Kroon PA Eur J Nutr; 2021 Oct; 60(7):3987-3999. PubMed ID: 33934200 [TBL] [Abstract][Full Text] [Related]
19. Gut microbiota-dependent trimethylamine N-oxide and all-cause mortality: Findings from an updated systematic review and meta-analysis. Farhangi MA Nutrition; 2020 Oct; 78():110856. PubMed ID: 32592979 [TBL] [Abstract][Full Text] [Related]
20. Are eggs good again? A precision nutrition perspective on the effects of eggs on cardiovascular risk, taking into account plasma lipid profiles and TMAO. Kang JW; Zivkovic AM J Nutr Biochem; 2022 Feb; 100():108906. PubMed ID: 34801688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]