BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35588625)

  • 1. Comprehensive analysis of emerging flame retardants, a risk factor to prostate cancer?
    Liu S; He B; Li H
    Ecotoxicol Environ Saf; 2022 Jul; 239():113627. PubMed ID: 35588625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive analysis of the impact of emerging flame retardants on prostate cancer progression: The potential molecular mechanisms and immune infiltration landscape.
    Xu X; Zhang D; Zhao K; Liu Z; Ren X; Zhang X; Lu Z; Qin C; Wang J; Wang S
    Toxicology; 2024 Jan; 501():153681. PubMed ID: 38006928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical and microbial transformation of emerging flame retardants: cause for concern?
    Chen D; Hale RC; Letcher RJ
    Environ Toxicol Chem; 2015 Apr; 34(4):687-99. PubMed ID: 25809099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging and legacy flame retardants in UK human milk and food suggest slow response to restrictions on use of PBDEs and HBCDD.
    Tao F; Abou-Elwafa Abdallah M; Ashworth DC; Douglas P; Toledano MB; Harrad S
    Environ Int; 2017 Aug; 105():95-104. PubMed ID: 28525835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive analysis based in silico study of organophosphate flame retardants - environmental explanation of bladder cancer progression.
    Yu K; Du Z; Xuan H; Chen Q
    Environ Toxicol Pharmacol; 2022 May; 92():103851. PubMed ID: 35346870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic comprehension of organophosphate flame retardants, an emerging threat to prostate cancer.
    Zhang X; Lu Z; Ren X; Chen X; Zhou X; Zhou X; Zhang T; Liu Y; Wang S; Qin C
    Ecotoxicol Environ Saf; 2021 Oct; 223():112589. PubMed ID: 34358932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flame retardant concentrations and profiles in wild birds associated with landfill: A critical review.
    Tongue ADW; Reynolds SJ; Fernie KJ; Harrad S
    Environ Pollut; 2019 May; 248():646-658. PubMed ID: 30844700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halogenated flame retardants: do the fire safety benefits justify the risks?
    Shaw SD; Blum A; Weber R; Kannan K; Rich D; Lucas D; Koshland CP; Dobraca D; Hanson S; Birnbaum LS
    Rev Environ Health; 2010; 25(4):261-305. PubMed ID: 21268442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Priority and emerging flame retardants in rivers: occurrence in water and sediment, Daphnia magna toxicity and risk assessment.
    Cristale J; García Vázquez A; Barata C; Lacorte S
    Environ Int; 2013 Sep; 59():232-43. PubMed ID: 23845937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced morphological - behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants.
    Noyes PD; Haggard DE; Gonnerman GD; Tanguay RL
    Toxicol Sci; 2015 May; 145(1):177-95. PubMed ID: 25711236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotoxicity and risk assessment of brominated and alternative flame retardants.
    Hendriks HS; Westerink RH
    Neurotoxicol Teratol; 2015; 52(Pt B):248-69. PubMed ID: 26363216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Birds and flame retardants: A review of the toxic effects on birds of historical and novel flame retardants.
    Guigueno MF; Fernie KJ
    Environ Res; 2017 Apr; 154():398-424. PubMed ID: 28193557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of new generation flame retardants to Daphnia magna.
    Waaijers SL; Hartmann J; Soeter AM; Helmus R; Kools SA; de Voogt P; Admiraal W; Parsons JR; Kraak MH
    Sci Total Environ; 2013 Oct; 463-464():1042-8. PubMed ID: 23886749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental neurotoxicity of organophosphate flame retardants in early life stages of Japanese medaka (Oryzias latipes).
    Sun L; Tan H; Peng T; Wang S; Xu W; Qian H; Jin Y; Fu Z
    Environ Toxicol Chem; 2016 Dec; 35(12):2931-2940. PubMed ID: 27146889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Editor's Highlight: Comparative Toxicity of Organophosphate Flame Retardants and Polybrominated Diphenyl Ethers to Caenorhabditis elegans.
    Behl M; Rice JR; Smith MV; Co CA; Bridge MF; Hsieh JH; Freedman JH; Boyd WA
    Toxicol Sci; 2016 Dec; 154(2):241-252. PubMed ID: 27566445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure.
    Wei GL; Li DQ; Zhuo MN; Liao YS; Xie ZY; Guo TL; Li JJ; Zhang SY; Liang ZQ
    Environ Pollut; 2015 Jan; 196():29-46. PubMed ID: 25290907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging and Legacy Flame Retardants in UK Indoor Air and Dust: Evidence for Replacement of PBDEs by Emerging Flame Retardants?
    Tao F; Abdallah MA; Harrad S
    Environ Sci Technol; 2016 Dec; 50(23):13052-13061. PubMed ID: 27782391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurobehavioral function and low-level exposure to brominated flame retardants in adolescents: a cross-sectional study.
    Kiciński M; Viaene MK; Den Hond E; Schoeters G; Covaci A; Dirtu AC; Nelen V; Bruckers L; Croes K; Sioen I; Baeyens W; Van Larebeke N; Nawrot TS
    Environ Health; 2012 Nov; 11():86. PubMed ID: 23151181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of organophosphorus flame retardants (OPFRs): occurrence, bioaccumulation, toxicity, and organism exposure.
    Du J; Li H; Xu S; Zhou Q; Jin M; Tang J
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22126-22136. PubMed ID: 31243659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.