These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35589676)

  • 1. Shape and structural relaxation of colloidal tactoids.
    Almohammadi H; Khadem SA; Bagnani M; Rey AD; Mezzenga R
    Nat Commun; 2022 May; 13(1):2778. PubMed ID: 35589676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation dynamics in bio-colloidal cholesteric liquid crystals confined to cylindrical geometry.
    Khadem SA; Bagnani M; Mezzenga R; Rey AD
    Nat Commun; 2020 Sep; 11(1):4616. PubMed ID: 32934229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-liquid crystalline phase separation in biological filamentous colloids: nucleation, growth and order-order transitions of cholesteric tactoids.
    Azzari P; Bagnani M; Mezzenga R
    Soft Matter; 2021 Jul; 17(27):6627-6636. PubMed ID: 34143859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid Fibrils Length Controls Shape and Structure of Nematic and Cholesteric Tactoids.
    Bagnani M; Nyström G; De Michele C; Mezzenga R
    ACS Nano; 2019 Jan; 13(1):591-600. PubMed ID: 30543398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids.
    Nyström G; Arcari M; Mezzenga R
    Nat Nanotechnol; 2018 Apr; 13(4):330-336. PubMed ID: 29556006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic constants of biological filamentous colloids: estimation and implications on nematic and cholesteric tactoid morphologies.
    Bagnani M; Azzari P; De Michele C; Arcari M; Mezzenga R
    Soft Matter; 2021 Mar; 17(8):2158-2169. PubMed ID: 33443281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-induced order-order transitions in amyloid fibril liquid crystalline tactoids.
    Almohammadi H; Bagnani M; Mezzenga R
    Nat Commun; 2020 Oct; 11(1):5416. PubMed ID: 33110064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanosized shape-changing colloids from liquid crystalline elastomers.
    Haseloh S; Ohm C; Smallwood F; Zentel R
    Macromol Rapid Commun; 2011 Jan; 32(1):88-93. PubMed ID: 21432975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals.
    Tortora L; Lavrentovich OD
    Proc Natl Acad Sci U S A; 2011 Mar; 108(13):5163-8. PubMed ID: 21402929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphogenesis of defects and tactoids during isotropic-nematic phase transition in self-assembled lyotropic chromonic liquid crystals.
    Kim YK; Shiyanovskii SV; Lavrentovich OD
    J Phys Condens Matter; 2013 Oct; 25(40):404202. PubMed ID: 24025849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries.
    Wang PX; MacLachlan MJ
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-Induced Assembly of Colloidal Liquid Crystalline Nanosheets Toward Unidirectional Macroscopic Structures.
    Nono Y; Mouri E; Nakata M; Nakato T
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2967-74. PubMed ID: 27455743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-Selective Exclusion Effects of Liquid Crystalline Tactoids on Nanoparticles: A Separation Method.
    Wang PX; Hamad WY; MacLachlan MJ
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3360-3365. PubMed ID: 29380473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesteric Tactoids with Tunable Helical Pitch Assembled by Lysozyme Amyloid Fibrils.
    Wu C; Bagnani M; Jin T; Yuan Y; Mezzenga R
    Small; 2024 Jul; 20(27):e2305839. PubMed ID: 38312104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological transformations of a nematic drop.
    Koizumi R; Golovaty D; Alqarni A; Li BX; Sternberg PJ; Lavrentovich OD
    Sci Adv; 2023 Jul; 9(27):eadf3385. PubMed ID: 37418526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal particles at a nematic-isotropic interface: effects of confinement.
    West JL; Zhang K; Glushchenko A; Andrienko D; Tasinkevych M; Reznikov Y
    Eur Phys J E Soft Matter; 2006 Jun; 20(2):237-42. PubMed ID: 16791459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaporation-Driven Liquid-Liquid Crystalline Phase Separation in Droplets of Anisotropic Colloids.
    Almohammadi H; Fu Y; Mezzenga R
    ACS Nano; 2023 Feb; 17(3):3098-3106. PubMed ID: 36719319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal Liquid Crystals Confined to Synthetic Tactoids.
    Gârlea IC; Dammone O; Alvarado J; Notenboom V; Jia Y; Koenderink GH; Aarts DGAL; Lettinga MP; Mulder BM
    Sci Rep; 2019 Dec; 9(1):20391. PubMed ID: 31892707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of colloidal placement by modulated molecular orientation in nematic cells.
    Peng C; Turiv T; Guo Y; Shiyanovskii SV; Wei QH; Lavrentovich OD
    Sci Adv; 2016 Sep; 2(9):e1600932. PubMed ID: 27652343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase separations in liquid crystal-colloid mixtures.
    Matsuyama A; Hirashima R
    J Chem Phys; 2008 Jan; 128(4):044907. PubMed ID: 18248000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.