These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35589764)

  • 1. On the measurement of skeletal muscle anisotropic permittivity property with a single cross-shaped needle insertion.
    Kwon H; Park HC; Barrera AC; Rutkove SB; Sanchez B
    Sci Rep; 2022 May; 12(1):8494. PubMed ID: 35589764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New electrical impedance methods for the in situ measurement of the complex permittivity of anisotropic skeletal muscle using multipolar needles.
    Kwon H; Guasch M; Nagy JA; Rutkove SB; Sanchez B
    Sci Rep; 2019 Feb; 9(1):3145. PubMed ID: 30816169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recording characteristics of electrical impedance myography needle electrodes.
    Kwon H; Rutkove SB; Sanchez B
    Physiol Meas; 2017 Aug; 38(9):1748-1765. PubMed ID: 28721951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New electrical impedance methods for the in situ measurement of the complex permittivity of anisotropic biological tissues.
    Kwon H; Nagy JA; Taylor R; Rutkove SB; Sanchez B
    Phys Med Biol; 2017 Nov; 62(22):8616-8633. PubMed ID: 28905814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical impedance imaging of human muscle at the microscopic scale using a multi-electrode needle device: A simulation study.
    Rutkove SB; Kwon H; Guasch M; Wu JS; Sanchez B
    Clin Neurophysiol; 2018 Aug; 129(8):1704-1708. PubMed ID: 29804914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical impedance myography method of measuring anisotropic tongue tissue.
    Luo X; Shi J; Llobet AM; Rutkove SB; Sanchez B
    Physiol Meas; 2023 May; 44(5):. PubMed ID: 37172607
    [No Abstract]   [Full Text] [Related]  

  • 7. Recording characteristics of electrical impedance-electromyography needle electrodes.
    Kwon H; Di Cristina JF; Rutkove SB; Sanchez B
    Physiol Meas; 2018 May; 39(5):055005. PubMed ID: 29616985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance-based tissue discrimination for needle guidance.
    Kalvøy H; Frich L; Grimnes S; Martinsen OG; Hol PK; Stubhaug A
    Physiol Meas; 2009 Feb; 30(2):129-40. PubMed ID: 19136732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-dependent anisotropic modeling and analysis using mfEIT: A computer simulation study.
    Zhang T; Li R; Potter T; Seo JK; Li G; Zhang Y
    Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2980. PubMed ID: 29521020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the anisotropic electrical properties of skeletal muscle.
    Hart FX; Berner NJ; McMillen RL
    Phys Med Biol; 1999 Feb; 44(2):413-21. PubMed ID: 10070791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Handheld Electrical Impedance Myography probe for the assessment of neuromuscular disease.
    Ogunnika OT; Scharfstein M; Cooper RC; Ma H; Dawson JL; Rutkove SB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3566-9. PubMed ID: 19163479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biopsy Needle Integrated with Electrical Impedance Sensing Microelectrode Array towards Real-time Needle Guidance and Tissue Discrimination.
    Park J; Choi WM; Kim K; Jeong WI; Seo JB; Park I
    Sci Rep; 2018 Jan; 8(1):264. PubMed ID: 29321531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing measurement of the electrical anisotropy of muscle.
    Chin AB; Garmirian LP; Nie R; Rutkove SB
    Muscle Nerve; 2008 May; 37(5):560-5. PubMed ID: 18404614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of stray capacitance to ground in three electrode monopolar needle bioimpedance measurements.
    Kalvoy H; Aliau-Bonet C; Pallas-Areny R; Martinsen OG
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7542-5. PubMed ID: 26738037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of subacute denervation on the electrical anisotropy of skeletal muscle: implications for clinical diagnostic testing.
    Ahad MA; Narayanaswami P; Kasselman LJ; Rutkove SB
    Clin Neurophysiol; 2010 Jun; 121(6):882-6. PubMed ID: 20153247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and pilot testing of a 26-gauge impedance-electromyography needle in wild-type and ALS mice.
    Rutkove SB; Le M; Ruehr SA; Nagy JA; Semple C; Sanchez B
    Muscle Nerve; 2022 Jun; 65(6):702-708. PubMed ID: 35383969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimally invasive silicon probe for electrical impedance measurements in small animals.
    Ivorra A; Gómez R; Noguera N; Villa R; Sola A; Palacios L; Hotter G; Aguiló J
    Biosens Bioelectron; 2003 Dec; 19(4):391-9. PubMed ID: 14615098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical characteristics of rat skeletal muscle in immaturity, adulthood and after sciatic nerve injury, and their relation to muscle fiber size.
    Ahad MA; Fogerson PM; Rosen GD; Narayanaswami P; Rutkove SB
    Physiol Meas; 2009 Dec; 30(12):1415-27. PubMed ID: 19887721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a tissue discrimination electrode embedded surgical needle using vibro-tactile feedback derived from electric impedance spectroscopy.
    Kent B; Rossa C
    Med Biol Eng Comput; 2022 Jan; 60(1):19-31. PubMed ID: 34677740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sample geometry and electrode configuration on measured electrical resistivity of skeletal muscle.
    Kun S; Peura R
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):163-9. PubMed ID: 10721623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.