These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 35589783)
1. Characterizing the mucin-degrading capacity of the human gut microbiota. Glover JS; Ticer TD; Engevik MA Sci Rep; 2022 May; 12(1):8456. PubMed ID: 35589783 [TBL] [Abstract][Full Text] [Related]
2. Genome-Scale Model and Omics Analysis of Metabolic Capacities of Ottman N; Davids M; Suarez-Diez M; Boeren S; Schaap PJ; Martins Dos Santos VAP; Smidt H; Belzer C; de Vos WM Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28687644 [TBL] [Abstract][Full Text] [Related]
3. Nutrient-specific proteomic analysis of the mucin degrading bacterium Akkermansia muciniphila. Lee JY; Jin HS; Kim KS; Baek JH; Kim BS; Lee DW Proteomics; 2022 Feb; 22(3):e2100125. PubMed ID: 34596327 [TBL] [Abstract][Full Text] [Related]
4. How microbial glycosyl hydrolase activity in the gut mucosa initiates microbial cross-feeding. Berkhout MD; Plugge CM; Belzer C Glycobiology; 2022 Mar; 32(3):182-200. PubMed ID: 34939101 [TBL] [Abstract][Full Text] [Related]
7. The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia. Fujio-Vejar S; Vasquez Y; Morales P; Magne F; Vera-Wolf P; Ugalde JA; Navarrete P; Gotteland M Front Microbiol; 2017; 8():1221. PubMed ID: 28713349 [TBL] [Abstract][Full Text] [Related]
8. Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Pichler MJ; Yamada C; Shuoker B; Alvarez-Silva C; Gotoh A; Leth ML; Schoof E; Katoh T; Sakanaka M; Katayama T; Jin C; Karlsson NG; Arumugam M; Fushinobu S; Abou Hachem M Nat Commun; 2020 Jul; 11(1):3285. PubMed ID: 32620774 [TBL] [Abstract][Full Text] [Related]
9. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Van den Abbeele P; Gérard P; Rabot S; Bruneau A; El Aidy S; Derrien M; Kleerebezem M; Zoetendal EG; Smidt H; Verstraete W; Van de Wiele T; Possemiers S Environ Microbiol; 2011 Oct; 13(10):2667-80. PubMed ID: 21883787 [TBL] [Abstract][Full Text] [Related]
10. Mucosal glycan degradation of the host by the gut microbiota. Bell A; Juge N Glycobiology; 2021 Jun; 31(6):691-696. PubMed ID: 33043970 [TBL] [Abstract][Full Text] [Related]
11. Mucin degradation niche as a driver of microbiome composition and Akkermansia muciniphila abundance in a dynamic gut model is donor independent. Van Herreweghen F; De Paepe K; Roume H; Kerckhof FM; Van de Wiele T FEMS Microbiol Ecol; 2018 Dec; 94(12):. PubMed ID: 30239657 [TBL] [Abstract][Full Text] [Related]
12. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. de la Cuesta-Zuluaga J; Mueller NT; Corrales-Agudelo V; Velásquez-Mejía EP; Carmona JA; Abad JM; Escobar JS Diabetes Care; 2017 Jan; 40(1):54-62. PubMed ID: 27999002 [TBL] [Abstract][Full Text] [Related]
13. A mathematical model of competition between fiber and mucin degraders in the gut provides a possible explanation for mucus thinning. Jegatheesan T; Moorthy AS; Eberl HJ J Theor Biol; 2024 Jun; 587():111824. PubMed ID: 38604595 [TBL] [Abstract][Full Text] [Related]
14. Disease-associated dysbiosis and potential therapeutic role of Akkermansia muciniphila, a mucus degrading bacteria of gut microbiome. Aggarwal V; Sunder S; Verma SR Folia Microbiol (Praha); 2022 Dec; 67(6):811-824. PubMed ID: 35596115 [TBL] [Abstract][Full Text] [Related]
15. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Chia LW; Hornung BVH; Aalvink S; Schaap PJ; de Vos WM; Knol J; Belzer C Antonie Van Leeuwenhoek; 2018 Jun; 111(6):859-873. PubMed ID: 29460206 [TBL] [Abstract][Full Text] [Related]
16. Mucin-degrading gut commensals isolated from healthy faecal donor suppress intestinal epithelial inflammation and regulate tight junction barrier function. Pan M; Barua N; Ip M Front Immunol; 2022; 13():1021094. PubMed ID: 36311778 [TBL] [Abstract][Full Text] [Related]
17. Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila. Trastoy B; Naegeli A; Anso I; Sjögren J; Guerin ME Nat Commun; 2020 Sep; 11(1):4844. PubMed ID: 32973204 [TBL] [Abstract][Full Text] [Related]
18. Short-term supplementation with ω-3 polyunsaturated fatty acids modulates primarily mucolytic species from the gut luminal mucin niche in a human fermentation system. Roussel C; Anunciação Braga Guebara S; Plante PL; Desjardins Y; Di Marzo V; Silvestri C Gut Microbes; 2022; 14(1):2120344. PubMed ID: 36109831 [TBL] [Abstract][Full Text] [Related]
19. Isolation and identification of mucin-degrading bacteria originated from human faeces and their potential probiotic efficacy according to host-microbiome enterotype. Yuan H; Zhou J; Li N; Wu X; Huang S; Park S J Appl Microbiol; 2022 Aug; 133(2):362-374. PubMed ID: 35365862 [TBL] [Abstract][Full Text] [Related]
20. The human gut symbiont Ruminococcus gnavus shows specificity to blood group A antigen during mucin glycan foraging: Implication for niche colonisation in the gastrointestinal tract. Wu H; Crost EH; Owen CD; van Bakel W; Martínez Gascueña A; Latousakis D; Hicks T; Walpole S; Urbanowicz PA; Ndeh D; Monaco S; Sánchez Salom L; Griffiths R; Reynolds RS; Colvile A; Spencer DIR; Walsh M; Angulo J; Juge N PLoS Biol; 2021 Dec; 19(12):e3001498. PubMed ID: 34936658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]