These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35589793)

  • 1. Reliability and generalization of gait biometrics using 3D inertial sensor data and 3D optical system trajectories.
    Santos G; Tavares T; Rocha A
    Sci Rep; 2022 May; 12(1):8414. PubMed ID: 35589793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial Sensor-Based Gait Recognition: A Review.
    Sprager S; Juric MB
    Sensors (Basel); 2015 Sep; 15(9):22089-127. PubMed ID: 26340634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test-Retest Reliability of Kinematic and Temporal Outcome Measures for Clinical Gait and Stair Walking Tests, Based on Wearable Inertial Sensors.
    Nilsson S; Ertzgaard P; Lundgren M; Grip H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, development, and evaluation of a local sensor-based gait phase recognition system using a logistic model decision tree for orthosis-control.
    Farah JD; Baddour N; Lemaire ED
    J Neuroeng Rehabil; 2019 Feb; 16(1):22. PubMed ID: 30709363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Vision-Based Gait Recognition: From Handcrafted to Deep Learning.
    Mogan JN; Lee CP; Lim KM
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic gender and unilateral load state recognition for biometric purposes.
    Derlatka M
    Technol Health Care; 2023; 31(6):2467-2475. PubMed ID: 37955071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven characterization of walking after a spinal cord injury using inertial sensors.
    Werner C; Gönel M; Lerch I; Curt A; Demkó L
    J Neuroeng Rehabil; 2023 Apr; 20(1):55. PubMed ID: 37120519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial Measuring System to Evaluate Gait Parameters and Dynamic Alignments for Lower-Limb Amputation Subjects.
    Han SL; Cai ML; Pan MC
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agreement of Gait Events Detection during Treadmill Backward Walking by Kinematic Data and Inertial Motion Units.
    Gottlieb U; Balasukumaran T; Hoffman JR; Springer S
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill.
    Donath L; Faude O; Lichtenstein E; Nüesch C; Mündermann A
    J Neuroeng Rehabil; 2016 Jan; 13():6. PubMed ID: 26790409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Person Recognition Based on Deep Gait: A Survey.
    Khaliluzzaman M; Uddin A; Deb K; Hasan MJ
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Body Segment and Side Recognition of an Inertial Measurement Unit Sensor during Gait.
    Baniasad M; Martin R; Crevoisier X; Pichonnaz C; Becce F; Aminian K
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One Small Step for a Man: Estimation of Gender, Age and Height from Recordings of One Step by a Single Inertial Sensor.
    Riaz Q; Vögele A; Krüger B; Weber A
    Sensors (Basel); 2015 Dec; 15(12):31999-2019. PubMed ID: 26703601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. User identification using gait patterns on UbiFloorII.
    Yun J
    Sensors (Basel); 2011; 11(3):2611-39. PubMed ID: 22163758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of inertial sensor based spatiotemporal gait parameters for short walking bouts in community dwelling older adults.
    Motti Ader LG; Greene BR; McManus K; Caulfield B
    Gait Posture; 2021 Mar; 85():1-6. PubMed ID: 33497966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of pelvis kinematics in level walking based on a single inertial sensor positioned close to the sacrum: validation on healthy subjects with stereophotogrammetric system.
    Buganè F; Benedetti MG; D'Angeli V; Leardini A
    Biomed Eng Online; 2014 Oct; 13():146. PubMed ID: 25336170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering attention to split-belt walking increases the generalization of motor memories across walking contexts.
    Mariscal DM; Iturralde PA; Torres-Oviedo G
    J Neurophysiol; 2020 May; 123(5):1838-1848. PubMed ID: 32233897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability and agreement between two wearable inertial sensor devices for measurement of arm activity during walking and running gait.
    Sama AJ; Hillstrom H; Daluiski A; Wolff A
    J Hand Ther; 2022; 35(1):151-154. PubMed ID: 33187807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reliability of local dynamic stability in walking while texting and performing an arithmetical problem.
    Hamacher D; Hamacher D; Törpel A; Krowicki M; Herold F; Schega L
    Gait Posture; 2016 Feb; 44():200-3. PubMed ID: 27004658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On Learning Disentangled Representations for Gait Recognition.
    Zhang Z; Tran L; Liu F; Liu X
    IEEE Trans Pattern Anal Mach Intell; 2022 Jan; 44(1):345-360. PubMed ID: 32750777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.