These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 35589835)
1. Prediction and variability mapping of some physicochemical characteristics of calcareous topsoil in an arid region using Vis-SWNIR and NIR spectroscopy. Alomar S; Mireei SA; Hemmat A; Masoumi AA; Khademi H Sci Rep; 2022 May; 12(1):8435. PubMed ID: 35589835 [TBL] [Abstract][Full Text] [Related]
2. Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem. Vaudour E; Cerovic ZG; Ebengo DM; Latouche G Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642640 [TBL] [Abstract][Full Text] [Related]
3. Use of soil spectral reflectance to estimate texture and fertility affected by land management practices in Ethiopian tropical highland. Tiruneh GA; Meshesha DT; Adgo E; Tsunekawa A; Haregeweyn N; Fenta AA; Belay AW; Tadesse N; Fekadu G; Reichert JM PLoS One; 2022; 17(7):e0270629. PubMed ID: 35862343 [TBL] [Abstract][Full Text] [Related]
4. Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis-NIR Spectroscopy. Xu S; Shi X; Wang M; Zhao Y PLoS One; 2016; 11(3):e0151536. PubMed ID: 26974821 [TBL] [Abstract][Full Text] [Related]
5. In Situ VIS-NIR Spectroscopy for a Basic and Rapid Soil Investigation. Debaene G; Bartmiński P; Siłuch M Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420662 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Two Portable Hyperspectral-Sensor-Based Instruments to Predict Key Soil Properties in Canadian Soils. Dhawale NM; Adamchuk VI; Prasher SO; Rossel RAV; Ismail AA Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408171 [TBL] [Abstract][Full Text] [Related]
7. Determination of soil pH from Vis-NIR spectroscopy by extreme learning machine and variable selection: A case study in lime concretion black soil. Wang L; Wang R Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 283():121707. PubMed ID: 35970087 [TBL] [Abstract][Full Text] [Related]
8. Spectral prediction of soil salinity and alkalinity indicators using visible, near-, and mid-infrared spectroscopy. Lotfollahi L; Delavar MA; Biswas A; Fatehi S; Scholten T J Environ Manage; 2023 Nov; 345():118854. PubMed ID: 37647733 [TBL] [Abstract][Full Text] [Related]
9. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy. Yousefi G; Homaee M; Norouzi AA Environ Monit Assess; 2018 Aug; 190(9):513. PubMed ID: 30105407 [TBL] [Abstract][Full Text] [Related]
10. Predicting field capacity, wilting point, and the other physical properties of soils using hyperspectral reflectance spectroscopy: two different statistical approaches. Arslan H; Tasan M; Yildirim D; Koksal ES; Cemek B Environ Monit Assess; 2014 Aug; 186(8):5077-88. PubMed ID: 24715616 [TBL] [Abstract][Full Text] [Related]
11. Combining Laser-Induced Breakdown Spectroscopy and Visible Near-Infrared Spectroscopy for Predicting Soil Organic Carbon and Texture: A Danish National-Scale Study. Wangeci A; Adén D; Nikolajsen T; Greve MH; Knadel M Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065862 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Depth-Specific Prediction of Soil Properties: MIR vs. Vis-NIR Spectroscopy. Shi Z; Yin J; Li B; Sun F; Miao T; Cao Y; Shi Z; Chen S; Hu B; Ji W Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447814 [TBL] [Abstract][Full Text] [Related]
13. Comparison of hyperspectral imaging and spectrometers for prediction of cheeses composition. da Silva Medeiros ML; Moreira de Carvalho L; Madruga MS; Rodríguez-Pulido FJ; Heredia FJ; Fernandes Barbin D Food Res Int; 2024 May; 183():114242. PubMed ID: 38760121 [TBL] [Abstract][Full Text] [Related]
14. Combined Use of Vis-NIR and XRF Sensors for Tropical Soil Fertility Analysis: Assessing Different Data Fusion Approaches. Tavares TR; Molin JP; Javadi SH; Carvalho HWP; Mouazen AM Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383627 [TBL] [Abstract][Full Text] [Related]
15. Estimation of the Relative Abundance of Quartz to Clay Minerals Using the Visible-Near-Infrared-Shortwave-Infrared Spectral Region. Francos N; Notesco G; Ben-Dor E Appl Spectrosc; 2021 Jul; 75(7):882-892. PubMed ID: 33687281 [TBL] [Abstract][Full Text] [Related]
16. Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics. Liu J; Han J; Xie J; Wang H; Tong W; Ba Y Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117639. PubMed ID: 31610465 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Optimized Preprocessing and Modeling Algorithms for Prediction of Soil Properties Using VIS-NIR Spectroscopy. Vestergaard RJ; Vasava HB; Aspinall D; Chen S; Gillespie A; Adamchuk V; Biswas A Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695958 [TBL] [Abstract][Full Text] [Related]
18. Integrating proximal soil sensing data and environmental variables to enhance the prediction accuracy for soil salinity and sodicity in a region of Xinjiang Province, China. Zhao S; Ayoubi S; Mousavi SR; Mireei SA; Shahpouri F; Wu SX; Chen CB; Zhao ZY; Tian CY J Environ Manage; 2024 Jul; 364():121311. PubMed ID: 38875977 [TBL] [Abstract][Full Text] [Related]
19. Prediction of soil organic carbon in a coal mining area by Vis-NIR spectroscopy. Sun W; Li X; Niu B PLoS One; 2018; 13(4):e0196198. PubMed ID: 29677214 [TBL] [Abstract][Full Text] [Related]
20. Estimation of Soil Organic Carbon Using Vis-NIR Spectral Data and Spectral Feature Bands Selection in Southern Xinjiang, China. Bai Z; Xie M; Hu B; Luo D; Wan C; Peng J; Shi Z Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]