BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35590106)

  • 1. Proton-gated anion transport governs macropinosome shrinkage.
    Zeziulia M; Blin S; Schmitt FW; Lehmann M; Jentsch TJ
    Nat Cell Biol; 2022 Jun; 24(6):885-895. PubMed ID: 35590106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of ClC-3 gating and proton/anion exchange by internal and external protons and the anion selectivity filter.
    Rohrbough J; Nguyen HN; Lamb FS
    J Physiol; 2018 Sep; 596(17):4091-4119. PubMed ID: 29917234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anion- and proton-dependent gating of ClC-4 anion/proton transporter under uncoupling conditions.
    Orhan G; Fahlke C; Alekov AK
    Biophys J; 2011 Mar; 100(5):1233-41. PubMed ID: 21354396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological Functions of the Volume-Regulated Anion Channel VRAC/LRRC8 and the Proton-Activated Chloride Channel ASOR/TMEM206.
    Kostritskaia Y; Klüssendorf M; Pan YE; Hassani Nia F; Kostova S; Stauber T
    Handb Exp Pharmacol; 2024; 283():181-218. PubMed ID: 37468723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic energy sensing by mammalian CLC anion/proton exchangers.
    Grieschat M; Guzman RE; Langschwager K; Fahlke C; Alekov AK
    EMBO Rep; 2020 Jun; 21(6):e47872. PubMed ID: 32390228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional significance of ion channels during macropinosome resolution in immune cells.
    Maekawa M; Natsume R; Arita M
    Front Physiol; 2022; 13():1037758. PubMed ID: 36338503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl
    Chavan TS; Cheng RC; Jiang T; Mathews II; Stein RA; Koehl A; Mchaourab HS; Tajkhorshid E; Maduke M
    Elife; 2020 Apr; 9():. PubMed ID: 32310757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels.
    Ullrich F; Blin S; Lazarow K; Daubitz T; von Kries JP; Jentsch TJ
    Elife; 2019 Jul; 8():. PubMed ID: 31318332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton-activated chloride channel PAC regulates endosomal acidification and transferrin receptor-mediated endocytosis.
    Osei-Owusu J; Yang J; Leung KH; Ruan Z; Lü W; Krishnan Y; Qiu Z
    Cell Rep; 2021 Jan; 34(4):108683. PubMed ID: 33503418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-sensitive outwardly rectifying (ASOR) anion channels in human epithelial cells are highly sensitive to temperature and independent of ClC-3.
    Sato-Numata K; Numata T; Okada T; Okada Y
    Pflugers Arch; 2013 Nov; 465(11):1535-43. PubMed ID: 23708799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes.
    Graves AR; Curran PK; Smith CL; Mindell JA
    Nature; 2008 Jun; 453(7196):788-92. PubMed ID: 18449189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease.
    Jentsch TJ; Pusch M
    Physiol Rev; 2018 Jul; 98(3):1493-1590. PubMed ID: 29845874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct pharmacological and molecular properties of the acid-sensitive outwardly rectifying (ASOR) anion channel from those of the volume-sensitive outwardly rectifying (VSOR) anion channel.
    Sato-Numata K; Numata T; Inoue R; Okada Y
    Pflugers Arch; 2016 May; 468(5):795-803. PubMed ID: 26743872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residues important for nitrate/proton coupling in plant and mammalian CLC transporters.
    Bergsdorf EY; Zdebik AA; Jentsch TJ
    J Biol Chem; 2009 Apr; 284(17):11184-93. PubMed ID: 19261613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Recurrent Gain-of-Function Mutation in CLCN6, Encoding the ClC-6 Cl
    Polovitskaya MM; Barbini C; Martinelli D; Harms FL; Cole FS; Calligari P; Bocchinfuso G; Stella L; Ciolfi A; Niceta M; Rizza T; Shinawi M; Sisco K; Johannsen J; Denecke J; Carrozzo R; Wegner DJ; Kutsche K; Tartaglia M; Jentsch TJ
    Am J Hum Genet; 2020 Dec; 107(6):1062-1077. PubMed ID: 33217309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate 268 regulates transport probability of the anion/proton exchanger ClC-5.
    Grieschat M; Alekov AK
    J Biol Chem; 2012 Mar; 287(11):8101-9. PubMed ID: 22267722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gating choreography and mechanism of the human proton-activated chloride channel ASOR.
    Wang C; Polovitskaya MM; Delgado BD; Jentsch TJ; Long SB
    Sci Adv; 2022 Feb; 8(5):eabm3942. PubMed ID: 35108041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of anion-proton coupling in mammalian endosomal CLC proteins.
    Zdebik AA; Zifarelli G; Bergsdorf EY; Soliani P; Scheel O; Jentsch TJ; Pusch M
    J Biol Chem; 2008 Feb; 283(7):4219-27. PubMed ID: 18063579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between intracellular pH and chloride in Xenopus oocytes expressing the chloride channel ClC-0.
    Cooper GJ; Fong P
    Am J Physiol Cell Physiol; 2003 Feb; 284(2):C331-8. PubMed ID: 12388074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.