These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Growth at elevated CO(2) delays the adverse effects of drought stress on leaf photosynthesis of the C(4) sugarcane. Vu JC; Allen LH J Plant Physiol; 2009 Jan; 166(2):107-16. PubMed ID: 18462832 [TBL] [Abstract][Full Text] [Related]
23. Reduced root cortical cell file number improves drought tolerance in maize. Chimungu JG; Brown KM; Lynch JP Plant Physiol; 2014 Dec; 166(4):1943-55. PubMed ID: 25355868 [TBL] [Abstract][Full Text] [Related]
24. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. Dewar R; Mauranen A; Mäkelä A; Hölttä T; Medlyn B; Vesala T New Phytol; 2018 Jan; 217(2):571-585. PubMed ID: 29086921 [TBL] [Abstract][Full Text] [Related]
25. Altered stomatal dynamics induced by changes in irradiance and vapour-pressure deficit under drought: impacts on the whole-plant transpiration efficiency of poplar genotypes. Durand M; Brendel O; Buré C; Le Thiec D New Phytol; 2019 Jun; 222(4):1789-1802. PubMed ID: 30681725 [TBL] [Abstract][Full Text] [Related]
26. Carbon isotope composition, water use efficiency, and drought sensitivity are controlled by a common genomic segment in maize. Avramova V; Meziane A; Bauer E; Blankenagel S; Eggels S; Gresset S; Grill E; Niculaes C; Ouzunova M; Poppenberger B; Presterl T; Rozhon W; Welcker C; Yang Z; Tardieu F; Schön CC Theor Appl Genet; 2019 Jan; 132(1):53-63. PubMed ID: 30244394 [TBL] [Abstract][Full Text] [Related]
27. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
28. Broader leaves result in better performance of indica rice under drought stress. Farooq M; Kobayashi N; Ito O; Wahid A; Serraj R J Plant Physiol; 2010 Sep; 167(13):1066-75. PubMed ID: 20392520 [TBL] [Abstract][Full Text] [Related]
29. Optimal stomatal theory predicts CO Gardner A; Jiang M; Ellsworth DS; MacKenzie AR; Pritchard J; Bader MK; Barton CVM; Bernacchi C; Calfapietra C; Crous KY; Dusenge ME; Gimeno TE; Hall M; Lamba S; Leuzinger S; Uddling J; Warren J; Wallin G; Medlyn BE New Phytol; 2023 Feb; 237(4):1229-1241. PubMed ID: 36373000 [TBL] [Abstract][Full Text] [Related]
30. Seasonal variability of the parameters of the Ball-Berry model of stomatal conductance in maize (Zea mays L.) and sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Miner GL; Bauerle WL Plant Cell Environ; 2017 Sep; 40(9):1874-1886. PubMed ID: 28556410 [TBL] [Abstract][Full Text] [Related]
31. An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness-of-fit across diverse data sets. Lamour J; Davidson KJ; Ely KS; Le Moguédec G; Leakey ADB; Li Q; Serbin SP; Rogers A Glob Chang Biol; 2022 Jun; 28(11):3537-3556. PubMed ID: 35090072 [TBL] [Abstract][Full Text] [Related]
33. Limited stomatal regulation of the largest-size class of Dryobalanops aromatica in a Bornean tropical rainforest in response to artificial soil moisture reduction. Yoshifuji N; Kumagai T; Ichie T; Kume T; Tateishi M; Inoue Y; Yoneyama A; Nakashizuka T J Plant Res; 2020 Mar; 133(2):175-191. PubMed ID: 31858360 [TBL] [Abstract][Full Text] [Related]
34. Midday water use efficiency in sorghum is linked to faster stomatal closure rate, lower stomatal aperture and higher stomatal density. Al-Salman Y; Ghannoum O; Cano FJ Plant J; 2023 Sep; 115(6):1661-1676. PubMed ID: 37300871 [TBL] [Abstract][Full Text] [Related]
35. Leaf photosynthesis and carbohydrates of CO₂-enriched maize and grain sorghum exposed to a short period of soil water deficit during vegetative development. Kakani VG; Vu JC; Allen LH; Boote KJ J Plant Physiol; 2011 Dec; 168(18):2169-76. PubMed ID: 21835494 [TBL] [Abstract][Full Text] [Related]
36. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040 [TBL] [Abstract][Full Text] [Related]
37. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Killi D; Bussotti F; Raschi A; Haworth M Physiol Plant; 2017 Feb; 159(2):130-147. PubMed ID: 27535211 [TBL] [Abstract][Full Text] [Related]
38. Genotypic variation in drought response of silver birch (Betula pendula): leaf water status and carbon gain. Aspelmeier S; Leuschner C Tree Physiol; 2004 May; 24(5):517-28. PubMed ID: 14996656 [TBL] [Abstract][Full Text] [Related]
40. Mild water and salt stress improve water use efficiency by decreasing stomatal conductance via osmotic adjustment in field maize. Liao Q; Gu S; Kang S; Du T; Tong L; Wood JD; Ding R Sci Total Environ; 2022 Jan; 805():150364. PubMed ID: 34818800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]