These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35590495)

  • 1. Directed Growth of Silk Nanofibrils on Graphene and Their Hybrid Nanocomposites.
    Ling S; Li C; Adamcik J; Wang S; Shao Z; Chen X; Mezzenga R
    ACS Macro Lett; 2014 Feb; 3(2):146-152. PubMed ID: 35590495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile fabrication of silk/MoS
    Li Z; Yang Y; Yao J; Shao Z; Chen X
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():123-129. PubMed ID: 28628998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When biomolecules meet graphene: from molecular level interactions to material design and applications.
    Li D; Zhang W; Yu X; Wang Z; Su Z; Wei G
    Nanoscale; 2016 Dec; 8(47):19491-19509. PubMed ID: 27878179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites.
    Wang F; Jyothirmayee Aravind SS; Wu H; Forys J; Venkataraman V; Ramanujachary K; Hu X
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():728-739. PubMed ID: 28629074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silk nanofibril self-assembly versus electrospinning.
    Humenik M; Lang G; Scheibel T
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Jul; 10(4):e1509. PubMed ID: 29393590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypeptide templating for designer hierarchical materials.
    Sun H; Marelli B
    Nat Commun; 2020 Jan; 11(1):351. PubMed ID: 31953407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology-tunable ultrafine metal oxide nanostructures uniformly grown on graphene and their applications in the photo-Fenton system.
    Shao P; Tian J; Liu B; Shi W; Gao S; Song Y; Ling M; Cui F
    Nanoscale; 2015 Sep; 7(34):14254-63. PubMed ID: 26166546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of nucleic acids, silk and hybrid materials thereof.
    Humenik M; Scheibel T
    J Phys Condens Matter; 2014 Dec; 26(50):503102. PubMed ID: 25419786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and properties of various hybrids fabricated by silk nanofibrils and nanohydroxyapatite.
    Mi R; Liu Y; Chen X; Shao Z
    Nanoscale; 2016 Dec; 8(48):20096-20102. PubMed ID: 27897302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications.
    Li K; Li P; Fan Y
    J Mater Chem B; 2019 Nov; 7(44):6890-6913. PubMed ID: 31660574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes.
    Lv L; Han X; Zong L; Li M; You J; Wu X; Li C
    ACS Nano; 2017 Aug; 11(8):8178-8184. PubMed ID: 28723068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications.
    Mehrotra S; Chouhan D; Konwarh R; Kumar M; Jadi PK; Mandal BB
    ACS Biomater Sci Eng; 2019 May; 5(5):2054-2078. PubMed ID: 33405710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process.
    Bai S; Liu S; Zhang C; Xu W; Lu Q; Han H; Kaplan DL; Zhu H
    Acta Biomater; 2013 Aug; 9(8):7806-13. PubMed ID: 23628774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption Behavior of Silk Fibroin on Amphiphilic Graphene Oxide.
    Tadepalli S; Hamper H; Park SH; Cao S; Naik RR; Singamaneni S
    ACS Biomater Sci Eng; 2016 Jul; 2(7):1084-1092. PubMed ID: 33445236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Spider Silk with Inorganic Nanomaterials.
    Kiseleva AP; Kiselev GO; Nikolaeva VO; Seisenbaeva G; Kessler V; Krivoshapkin PV; Krivoshapkina EF
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32947954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine.
    Yang G; Zhu C; Du D; Zhu J; Lin Y
    Nanoscale; 2015 Sep; 7(34):14217-31. PubMed ID: 26234249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Tunable, High-Refractive-Index Titanate-Silk Nanocomposites on the Micro- and Nanoscale.
    Perotto G; Cittadini M; Tao H; Kim S; Yang M; Kaplan DL; Martucci A; Omenetto FG
    Adv Mater; 2015 Nov; 27(42):6728-32. PubMed ID: 26414278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties.
    Buitrago JO; Patel KD; El-Fiqi A; Lee JH; Kundu B; Lee HH; Kim HW
    Acta Biomater; 2018 Mar; 69():218-233. PubMed ID: 29410166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials.
    Xu Z; Ma Y; Dai H; Tan S; Han B
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA block copolymers: functional materials for nanoscience and biomedicine.
    Schnitzler T; Herrmann A
    Acc Chem Res; 2012 Sep; 45(9):1419-30. PubMed ID: 22726237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.