These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35590537)

  • 1. Characterization of condensation on nanostructured surfaces and associated thermal hydraulics using a thermal lattice Boltzmann method.
    Mukherjee A; Basu DN; Mondal PK; Chen L
    Phys Rev E; 2022 Apr; 105(4-2):045308. PubMed ID: 35590537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous nucleation of argon vapor on the nanostructure surface with molecular dynamics simulation.
    Wang Q; Xie H; Liu J; Liu C
    J Mol Graph Model; 2020 Nov; 100():107674. PubMed ID: 32750651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice Boltzmann modeling of droplet condensation on superhydrophobic nanoarrays.
    Zhang Q; Sun D; Zhang Y; Zhu M
    Langmuir; 2014 Oct; 30(42):12559-69. PubMed ID: 25275954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation of droplet nucleation and growth on a rough surface: revealing the microscopic mechanism of the flooding mode.
    Niu D; Tang G
    RSC Adv; 2018 Jul; 8(43):24517-24524. PubMed ID: 35539186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of vapor condensation on patterned hydrophobic surfaces using the string method.
    Li Y; Ren W
    Langmuir; 2014 Aug; 30(31):9567-76. PubMed ID: 25046586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface.
    Koishi T; Yasuoka K; Fujikawa S; Ebisuzaki T; Zeng XC
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8435-40. PubMed ID: 19429707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow condensation on copper-based nanotextured superhydrophobic surfaces.
    Torresin D; Tiwari MK; Del Col D; Poulikakos D
    Langmuir; 2013 Jan; 29(2):840-8. PubMed ID: 23249322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation.
    Gao S; Liu W; Liu Z
    Nanoscale; 2019 Jan; 11(2):459-466. PubMed ID: 30325374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density Maximization of One-Step Electrodeposited Copper Nanocones and Dropwise Condensation Heat-Transfer Performance Evaluation.
    Wang R; Wu F; Xing D; Yu F; Gao X
    ACS Appl Mater Interfaces; 2020 May; 12(21):24512-24520. PubMed ID: 32363858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state.
    Liu T; Sun W; Sun X; Ai H
    Langmuir; 2010 Sep; 26(18):14835-41. PubMed ID: 20726606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling states of water droplets on nanostructured surfaces by design.
    Zhu C; Gao Y; Huang Y; Li H; Meng S; Francisco JS; Zeng XC
    Nanoscale; 2017 Nov; 9(46):18240-18245. PubMed ID: 29104978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities.
    Wang X; Xu B; Chen Z; Yang Y; Cao Q
    Langmuir; 2020 Aug; 36(31):9204-9214. PubMed ID: 32660253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-vapor transition on patterned solid surfaces in a shear flow.
    Yao W; Ren W
    J Chem Phys; 2015 Dec; 143(24):244701. PubMed ID: 26723696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating Heat Transfer During Transient Dropwise Condensation on a Low-Thermal-Conductivity Substrate.
    Macner AM; Daniel S; Steen PH
    Langmuir; 2019 Sep; 35(35):11566-11578. PubMed ID: 31381348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Condensation and wetting transitions on microstructured ultra-hydrophobic surfaces.
    Dorrer C; RĂ¼he J
    Langmuir; 2007 Mar; 23(7):3820-4. PubMed ID: 17311432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.