These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35590541)
1. Backbone and shortest-path exponents of the two-dimensional Q-state Potts model. Fang S; Ke D; Zhong W; Deng Y Phys Rev E; 2022 Apr; 105(4-1):044122. PubMed ID: 35590541 [TBL] [Abstract][Full Text] [Related]
2. Backbone exponents of the two-dimensional q-state Potts model: a Monte Carlo investigation. Deng Y; Blöte HW; Nienhuis B Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026114. PubMed ID: 14995527 [TBL] [Abstract][Full Text] [Related]
3. Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q. Kim SY; Creswick RJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066107. PubMed ID: 11415173 [TBL] [Abstract][Full Text] [Related]
4. Geometric properties of the Fortuin-Kasteleyn representation of the Ising model. Hou P; Fang S; Wang J; Hu H; Deng Y Phys Rev E; 2019 Apr; 99(4-1):042150. PubMed ID: 31108621 [TBL] [Abstract][Full Text] [Related]
5. Percolation effects in the Fortuin-Kasteleyn Ising model on the complete graph. Fang S; Zhou Z; Deng Y Phys Rev E; 2021 Jan; 103(1-1):012102. PubMed ID: 33601530 [TBL] [Abstract][Full Text] [Related]
6. Universality of the crossing probability for the Potts model for q=1, 2, 3, 4. Vasilyev OA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026125. PubMed ID: 14525067 [TBL] [Abstract][Full Text] [Related]
7. Geometric properties of two-dimensional critical and tricritical Potts models. Deng Y; Blöte HW; Nienhuis B Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026123. PubMed ID: 14995536 [TBL] [Abstract][Full Text] [Related]
8. Simulation of Potts models with real q and no critical slowing down. Gliozzi F Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016115. PubMed ID: 12241434 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo study of the triangular lattice gas with first- and second-neighbor exclusions. Zhang W; Deng Y Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031103. PubMed ID: 18850989 [TBL] [Abstract][Full Text] [Related]
10. Some geometric critical exponents for percolation and the random-cluster model. Deng Y; Zhang W; Garoni TM; Sokal AD; Sportiello A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):020102. PubMed ID: 20365513 [TBL] [Abstract][Full Text] [Related]
11. Critical properties of a dilute O(n) model on the kagome lattice. Li B; Guo W; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021128. PubMed ID: 18850807 [TBL] [Abstract][Full Text] [Related]
12. Critical exponents for the homology of Fortuin-Kasteleyn clusters on a torus. Morin-Duchesne A; Saint-Aubin Y Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021130. PubMed ID: 19792100 [TBL] [Abstract][Full Text] [Related]
13. Cluster algorithm for potts models with fixed spin densities. Bikker RP; Barkema GT Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5830-4. PubMed ID: 11089143 [TBL] [Abstract][Full Text] [Related]
14. Griffiths phase and critical behavior of the two-dimensional Potts models with long-range correlated disorder. Chatelain C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032105. PubMed ID: 24730788 [TBL] [Abstract][Full Text] [Related]
15. Loop-Cluster Coupling and Algorithm for Classical Statistical Models. Zhang L; Michel M; Elçi EM; Deng Y Phys Rev Lett; 2020 Nov; 125(20):200603. PubMed ID: 33258631 [TBL] [Abstract][Full Text] [Related]
16. Dilute Potts model in two dimensions. Qian X; Deng Y; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056132. PubMed ID: 16383713 [TBL] [Abstract][Full Text] [Related]
17. Invaded cluster algorithm for a tricritical point in a diluted Potts model. Balog I; Uzelac K Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011103. PubMed ID: 17677406 [TBL] [Abstract][Full Text] [Related]
18. Single-cluster dynamics for the random-cluster model. Deng Y; Qian X; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036707. PubMed ID: 19905246 [TBL] [Abstract][Full Text] [Related]
19. Determination of the dynamic and static critical exponents of the two-dimensional three-state Potts model using linearly varying temperature. Fan S; Zhong F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041141. PubMed ID: 17994970 [TBL] [Abstract][Full Text] [Related]
20. Edge phase transitions of the tricritical Potts model in two dimensions. Deng Y; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026109. PubMed ID: 15783380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]