These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35590563)

  • 1. Optimizing synchrony with a minimal coupling strength of coupled phase oscillators on complex networks based on desynchronous clustering.
    Chen W; Gao J; Lan Y; Xiao J
    Phys Rev E; 2022 Apr; 105(4-1):044302. PubMed ID: 35590563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal weighted networks of phase oscillators for synchronization.
    Tanaka T; Aoyagi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046210. PubMed ID: 18999511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal synchronization of directed complex networks.
    Skardal PS; Taylor D; Sun J
    Chaos; 2016 Sep; 26(9):094807. PubMed ID: 27781463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring the physical connectivity of complex networks from their functional dynamics.
    Ta HX; Yoon CN; Holm L; Han SK
    BMC Syst Biol; 2010 May; 4():70. PubMed ID: 20500902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reviving oscillation with optimal spatial period of frequency distribution in coupled oscillators.
    Deng T; Liu W; Zhu Y; Xiao J; Kurths J
    Chaos; 2016 Sep; 26(9):094813. PubMed ID: 27781475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Onset of synchronization in complex networks of noisy oscillators.
    Sonnenschein B; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051116. PubMed ID: 23004712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Subnetwork Topology for Synchronizing Interconnected Networks of Coupled Phase Oscillators.
    Yamamoto H; Kubota S; Shimizu FA; Hirano-Iwata A; Niwano M
    Front Comput Neurosci; 2018; 12():17. PubMed ID: 29643771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical synchrony of phase oscillators in modular networks.
    Skardal PS; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016208. PubMed ID: 22400644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION.
    Taylor D; Skardal PS; Sun J
    SIAM J Appl Math; 2016; 76(5):1984-2008. PubMed ID: 27872501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dense networks that do not synchronize and sparse ones that do.
    Townsend A; Stillman M; Strogatz SH
    Chaos; 2020 Aug; 30(8):083142. PubMed ID: 32872810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators.
    Lai YM; Porter MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012905. PubMed ID: 23944536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of coherence in complex networks of heterogeneous dynamical systems.
    Restrepo JG; Ott E; Hunt BR
    Phys Rev Lett; 2006 Jun; 96(25):254103. PubMed ID: 16907307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal phase synchronization in networks of phase-coherent chaotic oscillators.
    Skardal PS; Sevilla-Escoboza R; Vera-Ávila VP; Buldú JM
    Chaos; 2017 Jan; 27(1):013111. PubMed ID: 28147498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Existence and Stability Criteria for Global Synchrony and for Synchrony in two Alternating Clusters of Pulse-Coupled Oscillators Updated to Include Conduction Delays.
    Vedururu Srinivas A; Canavier CC
    bioRxiv; 2024 Aug; ():. PubMed ID: 38260324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental investigation on the susceptibility of minimal networks to a change in topology and number of oscillators.
    Manoj K; Pawar SA; Sujith RI
    Phys Rev E; 2021 Feb; 103(2-1):022207. PubMed ID: 33736040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the topology of synchrony optimized networks of a Kuramoto-model with non-identical oscillators.
    Kelly D; Gottwald GA
    Chaos; 2011 Jun; 21(2):025110. PubMed ID: 21721788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude death in a ring of nonidentical nonlinear oscillators with unidirectional coupling.
    Ryu JW; Kim JH; Son WS; Hwang DU
    Chaos; 2017 Aug; 27(8):083119. PubMed ID: 28863493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repulsive synchronization in an array of phase oscillators.
    Tsimring LS; Rulkov NF; Larsen ML; Gabbay M
    Phys Rev Lett; 2005 Jul; 95(1):014101. PubMed ID: 16090619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse-coupled BZ oscillators with unequal coupling strengths.
    Horvath V; Kutner DJ; Chavis JT; Epstein IR
    Phys Chem Chem Phys; 2015 Feb; 17(6):4664-76. PubMed ID: 25587932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact results for the Kuramoto model with a bimodal frequency distribution.
    Martens EA; Barreto E; Strogatz SH; Ott E; So P; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026204. PubMed ID: 19391817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.