These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35590563)

  • 21. Optimal global synchronization of partially forced Kuramoto oscillators.
    Climaco JS; Saa A
    Chaos; 2019 Jul; 29(7):073115. PubMed ID: 31370401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How synaptic weights determine stability of synchrony in networks of pulse-coupled excitatory and inhibitory oscillators.
    Kriener B
    Chaos; 2012 Sep; 22(3):033143. PubMed ID: 23020482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One node driving synchronisation.
    Wang C; Grebogi C; Baptista MS
    Sci Rep; 2015 Dec; 5():18091. PubMed ID: 26656718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuromodulatory effects on synchrony and network reorganization in networks of coupled Kuramoto oscillators.
    Aktay S; Sander LM; Zochowski M
    bioRxiv; 2024 Feb; ():. PubMed ID: 38464134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Onset of synchronization in large networks of coupled oscillators.
    Restrepo JG; Ott E; Hunt BR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036151. PubMed ID: 15903537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cluster synchrony in systems of coupled phase oscillators with higher-order coupling.
    Skardal PS; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036208. PubMed ID: 22060476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synchronization of nonlinear coupled networks via aperiodically intermittent pinning control.
    Liu X; Chen T
    IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):113-26. PubMed ID: 25532160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling.
    Canavier CC; Tikidji-Hamburyan RA
    Phys Rev E; 2017 Mar; 95(3-1):032215. PubMed ID: 28415236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applications of optimal nonlinear control to a whole-brain network of FitzHugh-Nagumo oscillators.
    Chouzouris T; Roth N; Cakan C; Obermayer K
    Phys Rev E; 2021 Aug; 104(2-1):024213. PubMed ID: 34525550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phase synchronization of three locally coupled chaotic electrochemical oscillators: enhanced phase diffusion and identification of indirect coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016210. PubMed ID: 21405763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collective behaviors of mean-field coupled Stuart-Landau limit-cycle oscillators under additional repulsive links.
    Wang J; Zou W
    Chaos; 2021 Jul; 31(7):073107. PubMed ID: 34340324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chaos in networks of coupled oscillators with multimodal natural frequency distributions.
    Smith LD; Gottwald GA
    Chaos; 2019 Sep; 29(9):093127. PubMed ID: 31575123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multistable states in a system of coupled phase oscillators with inertia.
    Yuan D; Lin F; Wang L; Liu D; Yang J; Xiao Y
    Sci Rep; 2017 Feb; 7():42178. PubMed ID: 28176829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A universal order parameter for synchrony in networks of limit cycle oscillators.
    Schröder M; Timme M; Witthaut D
    Chaos; 2017 Jul; 27(7):073119. PubMed ID: 28764398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators.
    Lin W; Li H; Ying H; Wang X
    Phys Rev E; 2016 Dec; 94(6-1):062303. PubMed ID: 28085292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling.
    Wu H; Kang L; Liu Z; Dhamala M
    Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The number of synaptic inputs and the synchrony of large, sparse neuronal networks.
    Golomb D; Hansel D
    Neural Comput; 2000 May; 12(5):1095-139. PubMed ID: 10905810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiplexing topologies and time scales: The gains and losses of synchrony.
    Makovkin S; Kumar A; Zaikin A; Jalan S; Ivanchenko M
    Phys Rev E; 2017 Nov; 96(5-1):052214. PubMed ID: 29347745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two mechanisms of remote synchronization in a chain of Stuart-Landau oscillators.
    Kumar M; Rosenblum M
    Phys Rev E; 2021 Nov; 104(5-1):054202. PubMed ID: 34942824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasticity and learning in a network of coupled phase oscillators.
    Seliger P; Young SC; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041906. PubMed ID: 12005872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.