These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 35590566)
1. Work and heat distributions of an inertial Brownian particle. Colmenares PJ Phys Rev E; 2022 Apr; 105(4-1):044109. PubMed ID: 35590566 [TBL] [Abstract][Full Text] [Related]
2. Optimal work associated with off-centered harmonic Brownian motion at any friction damping. Colmenares PJ; Paredes-Altuve O Phys Rev E; 2021 Sep; 104(3-1):034115. PubMed ID: 34654126 [TBL] [Abstract][Full Text] [Related]
3. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions. Banik SK; Bag BC; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528 [TBL] [Abstract][Full Text] [Related]
4. Inertial dynamics of an active Brownian particle. Mayer Martins J; Wittkowski R Phys Rev E; 2022 Sep; 106(3-1):034616. PubMed ID: 36266913 [TBL] [Abstract][Full Text] [Related]
5. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions. Híjar H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022139. PubMed ID: 25768490 [TBL] [Abstract][Full Text] [Related]
6. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles. Lukassen LJ; Oberlack M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777 [TBL] [Abstract][Full Text] [Related]
7. Brownian colloidal particles: Ito, Stratonovich, or a different stochastic interpretation. Sancho JM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):062102. PubMed ID: 22304133 [TBL] [Abstract][Full Text] [Related]
8. Fokker-Planck equation of the reduced Wigner function associated to an Ohmic quantum Langevin dynamics. Colmenares PJ Phys Rev E; 2018 May; 97(5-1):052126. PubMed ID: 29906902 [TBL] [Abstract][Full Text] [Related]
9. Work fluctuations in a time-dependent harmonic potential: rigorous results beyond the overdamped limit. Kwon C; Noh JD; Park H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062102. PubMed ID: 24483381 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of a metastable state nonlinearly coupled to a heat bath driven by external noise. Chaudhuri JR; Barik D; Banik SK Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061119. PubMed ID: 17280050 [TBL] [Abstract][Full Text] [Related]
11. Generalized dynamics and fluctuation-dissipation theorem for a parabolic potential. Colmenares PJ Phys Rev E; 2023 Jul; 108(1-1):014115. PubMed ID: 37583176 [TBL] [Abstract][Full Text] [Related]
13. Heat fluctuation of a harmonically trapped particle in an active bath. Goswami K Phys Rev E; 2019 Jan; 99(1-1):012112. PubMed ID: 30780240 [TBL] [Abstract][Full Text] [Related]
14. Heat, temperature and Clausius inequality in a model for active Brownian particles. Marconi UMB; Puglisi A; Maggi C Sci Rep; 2017 Apr; 7():46496. PubMed ID: 28429787 [TBL] [Abstract][Full Text] [Related]
15. Quantum tunneling at zero temperature in the strong friction regime. Bolivar AO Phys Rev Lett; 2005 Jan; 94(2):026807. PubMed ID: 15698213 [TBL] [Abstract][Full Text] [Related]
17. Overdamped limit and inverse-friction expansion for Brownian motion in an inhomogeneous medium. Durang X; Kwon C; Park H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062118. PubMed ID: 26172672 [TBL] [Abstract][Full Text] [Related]
18. Inertial effects on the Brownian gyrator. Bae Y; Lee S; Kim J; Jeong H Phys Rev E; 2021 Mar; 103(3-1):032148. PubMed ID: 33862720 [TBL] [Abstract][Full Text] [Related]
19. Role of the interpretation of stochastic calculus in systems with cross-correlated Gaussian white noises. Méndez V; Denisov SI; Campos D; Horsthemke W Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012116. PubMed ID: 25122260 [TBL] [Abstract][Full Text] [Related]
20. External-noise-driven bath and the generalized semiclassical Kramers theory. Ghosh P; Shit A; Chattopadhyay S; Chaudhuri JR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041113. PubMed ID: 21230244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]