These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35590567)

  • 1. Tuning of strong nonlinearity in radio-frequency superconducting-quantum-interference-device meta-atoms.
    Zack E; Zhang D; Trepanier M; Cai J; Tai T; Lazarides N; Hizanidis J; Anlage SM
    Phys Rev E; 2022 Apr; 105(4-1):044202. PubMed ID: 35590567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent oscillations of driven rf SQUID metamaterials.
    Trepanier M; Zhang D; Mukhanov O; Koshelets VP; Jung P; Butz S; Ott E; Antonsen TM; Ustinov AV; Anlage SM
    Phys Rev E; 2017 May; 95(5-1):050201. PubMed ID: 28618480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Superconducting Cavity using Superconducting Quantum Interference Device Metamaterials.
    Kim S; Shrekenhamer D; McElroy K; Strikwerda A; Alldredge J
    Sci Rep; 2019 Mar; 9(1):4630. PubMed ID: 30874574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flux bias-controlled chaos and extreme multistability in SQUID oscillators.
    Hizanidis J; Lazarides N; Tsironis GP
    Chaos; 2018 Jun; 28(6):063117. PubMed ID: 29960413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable resonant and nonresonant interactions between a phase qubit and LC resonator.
    Allman MS; Whittaker JD; Castellanos-Beltran M; Cicak K; da Silva F; DeFeo MP; Lecocq F; Sirois A; Teufel JD; Aumentado J; Simmonds RW
    Phys Rev Lett; 2014 Mar; 112(12):123601. PubMed ID: 24724648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate periodicity measurement of superconducting quantum interference device magnetic flux response.
    Nakanishi M
    Rev Sci Instrum; 2010 Sep; 81(9):094703. PubMed ID: 20886999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern formation and chimera states in 2D SQUID metamaterials.
    Hizanidis J; Lazarides N; Tsironis GP
    Chaos; 2020 Jan; 30(1):013115. PubMed ID: 32013479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.
    Augustine MP; TonThat DM; Clarke J
    Solid State Nucl Magn Reson; 1998 Mar; 11(1-2):139-56. PubMed ID: 9650797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital-to-analog converter using a superconducting quantum interference device.
    Nakanishi M
    Rev Sci Instrum; 2012 Nov; 83(11):114701. PubMed ID: 23206079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconducting Quantum Magnetometer Based on Flux Focusing Effect for High-Sensitivity Applications.
    Vettoliere A; Granata C
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Flux Sensor Based on Spiking Neurons with Josephson Junctions.
    Karimov T; Ostrovskii V; Rybin V; Druzhina O; Kolev G; Butusov D
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-noise-limited microwave amplification using a graphene Josephson junction.
    Sarkar J; Salunkhe KV; Mandal S; Ghatak S; Marchawala AH; Das I; Watanabe K; Taniguchi T; Vijay R; Deshmukh MM
    Nat Nanotechnol; 2022 Nov; 17(11):1147-1152. PubMed ID: 36309589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superconducting quantum interference device readout circuit with tunable feedback polarity.
    Wu X; Liu J; Chen W
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37768134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-Tuning and Optimization of Superconducting Quantum Magnetic Sensors by Thermal Annealing.
    Vettoliere A; Ruggiero B; Valentino M; Silvestrini P; Granata C
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device.
    Zhao J; Zhang Y; Lee YH; Krause HJ
    Rev Sci Instrum; 2014 May; 85(5):054707. PubMed ID: 24880395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter scaling in the decoherent quantum-classical transition for chaotic rf superconducting quantum interference devices.
    Mao T; Yu Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016212. PubMed ID: 20365451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit.
    Zagoskin AM; Il'ichev E; McCutcheon MW; Young JF; Nori F
    Phys Rev Lett; 2008 Dec; 101(25):253602. PubMed ID: 19113707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative dynamics in coupled noisy dynamical systems near a critical point: The dc superconducting quantum interference device as a case study.
    Palacios A; Aven J; Longhini P; In V; Bulsara AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021122. PubMed ID: 17025408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable backaction of a DC SQUID on an integrated micromechanical resonator.
    Poot M; Etaki S; Mahboob I; Onomitsu K; Yamaguchi H; Blanter YM; van der Zant HS
    Phys Rev Lett; 2010 Nov; 105(20):207203. PubMed ID: 21231261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Sensitive Tunable Magnetometer Based on Superconducting Quantum Interference Device.
    Vettoliere A; Granata C
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.