These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35590599)

  • 1. Electrical cell impedance spectral mesoscopic model applied to experimental data of variable size microelectrodes.
    Buchini Labayen AC; Bellotti MI; Bast W; Bonetto FJ
    Phys Rev E; 2022 Apr; 105(4-1):044401. PubMed ID: 35590599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dependence of spectral impedance on disc microelectrode radius.
    Ahuja AK; Behrend MR; Whalen JJ; Humayun MS; Weiland JD
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1457-60. PubMed ID: 18390340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level.
    Susloparova A; Koppenhöfer D; Law JK; Vu XT; Ingebrandt S
    Lab Chip; 2015 Feb; 15(3):668-79. PubMed ID: 25412224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of the impact of clinical bacterial isolates on epithelial cell monolayer integrity by the electric Cell-Substrate Impedance Sensing (ECIS) method.
    Nahid MA; Campbell CE; Fong KSK; Barnhill JC; Washington MA
    J Microbiol Methods; 2020 Feb; 169():105833. PubMed ID: 31904440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedance analysis of cultured cells: a mean-field electrical response model for electric cell-substrate impedance sensing technique.
    Urdapilleta E; Bellotti M; Bonetto FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041908. PubMed ID: 17155097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automated system for measuring tip impedance and among-electrode shunting in high-electrode count microelectrode arrays.
    Gunalan K; Warren DJ; Perry JD; Normann RA; Clark GA
    J Neurosci Methods; 2009 Apr; 178(2):263-9. PubMed ID: 19150630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical characteristics of 2D and 3D microelectrodes for high-resolution retinal prostheses.
    Lee S; Ahn J; Yoo H; Jung S; Oh S; Park S; Cho D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3535-8. PubMed ID: 24110492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.
    Lee S; Ahn JH; Seo JM; Chung H; Cho DI
    Sensors (Basel); 2015 Jun; 15(6):14345-55. PubMed ID: 26091397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of osmolarity on human epithelial conjunctival cells using an electrical technique.
    Bellotti M; Bast W; Berra A; Bonetto FJ
    Graefes Arch Clin Exp Ophthalmol; 2011 Dec; 249(12):1875-82. PubMed ID: 21773768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response characteristics of single-cell impedance sensors employed with surface-modified microelectrodes.
    Thein M; Asphahani F; Cheng A; Buckmaster R; Zhang M; Xu J
    Biosens Bioelectron; 2010 Apr; 25(8):1963-9. PubMed ID: 20176469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining optical and electrical impedance techniques for quantitative measurement of confluence in MDCK-I cell cultures.
    De Blasio BF; Laane M; Walmann T; Giaever I
    Biotechniques; 2004 Apr; 36(4):650-4, 656, 658 passim. PubMed ID: 15088383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of the cell-electrode interface noise for microelectrode arrays.
    Guo J; Yuan J; Chan M
    IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):605-13. PubMed ID: 23853261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing.
    Lo CM; Keese CR; Giaever I
    Biophys J; 1995 Dec; 69(6):2800-7. PubMed ID: 8599686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal distortion from microelectrodes in clinical EEG acquisition systems.
    Stacey WC; Kellis S; Patel PR; Greger B; Butson CR
    J Neural Eng; 2012 Oct; 9(5):056007. PubMed ID: 22878608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.