These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35590756)

  • 1. Nickel Catalyst with a Hybrid P, N Ligand for Kumada Catalyst Transfer Polycondensation of Sterically Hindered Thiophenes.
    Schiefer D; Wen T; Wang Y; Goursot P; Komber H; Hanselmann R; Braunstein P; Reiter G; Sommer M
    ACS Macro Lett; 2014 Jul; 3(7):617-621. PubMed ID: 35590756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Structurally Defined Cationic Polythiophenes for DNA Binding and Gene Delivery.
    Zhang C; Ji J; Shi X; Zheng X; Wang X; Feng F
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4519-4529. PubMed ID: 29323477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of halogens in the catalyst transfer polycondensation for π-conjugated polymers.
    Ye S; Foster SM; Pollit AA; Cheng S; Seferos DS
    Chem Sci; 2019 Feb; 10(7):2075-2080. PubMed ID: 30842865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in the synthesis of regioregular thiophene-based conjugated polymers for electronic and optoelectronic applications using nickel and palladium-based catalytic systems.
    Amna B; Siddiqi HM; Hassan A; Ozturk T
    RSC Adv; 2020 Jan; 10(8):4322-4396. PubMed ID: 35495258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dehalogenative or Deprotonative? The Preparation Pathway to the Organometallic Monomer for Transition-Metal-Catalyzed Catalyst-Transfer-Type Polymerization of Thiophene Derivatives.
    Shibuya Y; Mori A
    Chemistry; 2020 Jun; 26(31):6976-6987. PubMed ID: 32086855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision Synthesis of Conjugated Polymers Using the Kumada Methodology.
    Cheng S; Zhao R; Seferos DS
    Acc Chem Res; 2021 Nov; 54(22):4203-4214. PubMed ID: 34726058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying the missing link in catalyst transfer polymerization.
    He W; Patrick BO; Kennepohl P
    Nat Commun; 2018 Sep; 9(1):3866. PubMed ID: 30250037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the boron moiety and water on suzuki-miyaura catalyst-transfer condensation polymerization.
    Kosaka K; Ohta Y; Yokozawa T
    Macromol Rapid Commun; 2015 Feb; 36(4):373-7. PubMed ID: 25504582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Hairy" poly(3-hexylthiophene) particles prepared via surface-initiated Kumada catalyst-transfer polycondensation.
    Senkovskyy V; Tkachov R; Beryozkina T; Komber H; Oertel U; Horecha M; Bocharova V; Stamm M; Gevorgyan SA; Krebs FC; Kiriy A
    J Am Chem Soc; 2009 Nov; 131(45):16445-53. PubMed ID: 19860410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kumada Catalyst-Transfer Polycondensation: Mechanism, Opportunities, and Challenges.
    Kiriy A; Senkovskyy V; Sommer M
    Macromol Rapid Commun; 2011 Oct; 32(19):1503-17. PubMed ID: 21800394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-confined nickel mediated cross-coupling reactions: characterization of initiator environment in Kumada catalyst-transfer polycondensation.
    Sontag SK; Sheppard GR; Usselman NM; Marshall N; Locklin J
    Langmuir; 2011 Oct; 27(19):12033-41. PubMed ID: 21875096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlating Molar Mass, π-Conjugation, and Optical Properties of Narrowly Distributed Anionic Polythiophenes in Aqueous Solutions.
    Schmidt M; Karg M; Thelakkat M; Brendel JC
    Macromol Rapid Commun; 2024 Jan; 45(1):e2300396. PubMed ID: 37533353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-Initiated Synthesis of Conjugated Microporous Polymers: Chain-Growth Kumada Catalyst-Transfer Polycondensation at Work.
    Senkovskyy V; Senkovska I; Kiriy A
    ACS Macro Lett; 2012 Apr; 1(4):494-498. PubMed ID: 35585748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stille Catalyst-Transfer Polycondensation Using Pd-PEPPSI-IPr for High-Molecular-Weight Regioregular Poly(3-hexylthiophene).
    Qiu Y; Mohin J; Tsai CH; Tristram-Nagle S; Gil RR; Kowalewski T; Noonan KJ
    Macromol Rapid Commun; 2015 May; 36(9):840-4. PubMed ID: 25757046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random catalyst walking along polymerized poly(3-hexylthiophene) chains in Kumada catalyst-transfer polycondensation.
    Tkachov R; Senkovskyy V; Komber H; Sommer JU; Kiriy A
    J Am Chem Soc; 2010 Jun; 132(22):7803-10. PubMed ID: 20465260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Role of Disproportionation Energy in Kumada Catalyst-Transfer Polycondensation.
    Bilbrey JA; Sontag SK; Huddleston NE; Allen WD; Locklin J
    ACS Macro Lett; 2012 Aug; 1(8):995-1000. PubMed ID: 35607024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Active Catalyst System Based on Pd (0) and a Phosphine-Based Bulky Ligand for the Synthesis of Thiophene-Containing Conjugated Polymers.
    Liu M; Liu L; Zhang Z; Wan M; Guo H; Li D
    Front Chem; 2021; 9():743091. PubMed ID: 34557476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalyst-transfer polycondensation for the synthesis of poly(p-phenylene) with controlled molecular weight and low polydispersity.
    Miyakoshi R; Shimono K; Yokoyama A; Yokozawa T
    J Am Chem Soc; 2006 Dec; 128(50):16012-3. PubMed ID: 17165735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matchmaking in Catalyst-Transfer Polycondensation: Optimizing Catalysts based on Mechanistic Insight.
    Leone AK; McNeil AJ
    Acc Chem Res; 2016 Dec; 49(12):2822-2831. PubMed ID: 27936580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the chain-growth synthesis of statistical π-conjugated donor-acceptor copolymers.
    Pollit AA; Bridges CR; Seferos DS
    Macromol Rapid Commun; 2015 Jan; 36(1):65-70. PubMed ID: 25393706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.