These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35590806)

  • 1. A Novel Clock Parameterization and Its Implications for Precise Point Positioning and Ionosphere Estimation.
    Keshin M; Sato Y; Nakakuki K; Hirokawa R
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time PPP-RTK Performance Analysis Using Ionospheric Corrections from Multi-Scale Network Configurations.
    Psychas D; Verhagen S
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32466386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of BeiDou Triple-Frequency Receiver-Related Pseudorange Biases and Their Application in BDS Precise Positioning and Ambiguity Resolution.
    Zheng F; Gong X; Lou Y; Gu S; Jing G; Shi C
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31405160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Wide-Lane Ambiguities Derived from Geometry-Free and Geometry-Based Precise Point Positioning Models and Their Implication for Orbit and Clock Quality.
    Chen G; Liu S; Zhao Q
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29857539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Global Ionospheric Map and Its Application in Single-Frequency Positioning.
    Zhang L; Yao Y; Peng W; Shan L; He Y; Kong J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30845733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter.
    Han H; Xu T; Wang J
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GNSS-Based Non-Negative Absolute Ionosphere Total Electron Content, its Spatial Gradients, Time Derivatives and Differential Code Biases: Bounded-Variable Least-Squares and Taylor Series.
    Yasyukevich Y; Mylnikova A; Vesnin A
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Frequency Precise Point Positioning Using Regional Dual-Frequency Observations.
    Zou J; Wang A; Wang J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33919655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Evaluation of Triple-Frequency GPS/Galileo Techniques for Precise Static and Kinematic Applications.
    Abd Rabbou M; Abdelazeem M; Morsy S
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34068123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction.
    Huang L; Zhang H; Xu P; Geng J; Wang C; Liu J
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28264424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Satellite- and epoch differenced precise point positioning based on a regional augmentation network.
    Li H; Chen J; Wang J; Wu B
    Sensors (Basel); 2012; 12(6):7518-28. PubMed ID: 22969358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Coseismic Displacement Retrieval Based on Temporal Point Positioning with IGS RTS Correction Products.
    Zhang Y; Nie Z; Wang Z; Wu H; Xu X
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambiguity of Residual Constraint-Based Precise Point Positioning with Partial Ambiguity Resolution under No Real-Time Network Corrections Using Real Global Positioning System (GPS) Data.
    Qin H; Liu P; Cong L; Xue X
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations.
    Zhang H; Gao Z; Ge M; Niu X; Huang L; Tu R; Li X
    Sensors (Basel); 2013 Nov; 13(11):15708-25. PubMed ID: 24253190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning.
    Yi W; Song W; Lou Y; Shi C; Yao Y
    Sci Rep; 2016 May; 6():26334. PubMed ID: 27222361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regiomontan: A Regional High Precision Ionosphere Delay Model and Its Application in Precise Point Positioning.
    Boisits J; Glaner M; Weber R
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Support Vector Machine for Regional Ionospheric Delay Modeling.
    Zhang Z; Pan S; Gao C; Zhao T; Gao W
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time PPP Based on the Coupling Estimation of Clock Bias and Orbit Error with Broadcast Ephemeris.
    Pan S; Chen W; Jin X; Shi X; He F
    Sensors (Basel); 2015 Jul; 15(7):17808-26. PubMed ID: 26205276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving GNSS PPP Convergence: The Case of Atmospheric-Constrained, Multi-GNSS PPP-AR.
    Aggrey J; Bisnath S
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30704108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.