These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35590815)

  • 1. Acoustic- and Radio-Frequency-Based Human Activity Recognition.
    Mohtadifar M; Cheffena M; Pourafzal A
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation-Independent Human Activity Recognition Using Complementary Radio Frequency Sensing.
    Muaaz M; Waqar S; Pätzold M
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Human Activity Recognition Performance by Data Fusion and Feature Engineering.
    Chen J; Sun Y; Sun S
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing a novel hybrid method based on dispersion entropy and adaptive boosting algorithm for human activity recognition.
    Diykh M; Abdulla S; Deo RC; Siuly S; Ali M
    Comput Methods Programs Biomed; 2023 Feb; 229():107305. PubMed ID: 36527814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TARF: Technology-Agnostic RF Sensing for Human Activity Recognition.
    Yang C; Wang X; Mao S
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):636-647. PubMed ID: 35594224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radar Human Activity Recognition with an Attention-Based Deep Learning Network.
    Huan S; Wu L; Zhang M; Wang Z; Yang C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Domain Knowledge for Interpretable and Competitive Multi-Class Human Activity Recognition.
    Scheurer S; Tedesco S; Brown KN; O'Flynn B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OPERAnet, a multimodal activity recognition dataset acquired from radio frequency and vision-based sensors.
    Bocus MJ; Li W; Vishwakarma S; Kou R; Tang C; Woodbridge K; Craddock I; McConville R; Santos-Rodriguez R; Chetty K; Piechocki R
    Sci Data; 2022 Aug; 9(1):474. PubMed ID: 35922418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of standing and sitting phases based on in-socket piezoelectric sensors in a transfemoral amputee.
    Yahya T; Hamzaid NA; Ali S; Jasni F; Shasmin HN
    Biomed Tech (Berl); 2020 Oct; 65(5):567-576. PubMed ID: 32459189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [-25]A Similarity Analysis of Audio Signal to Develop a Human Activity Recognition Using Similarity Networks.
    García-Hernández A; Galván-Tejada CE; Galván-Tejada JI; Celaya-Padilla JM; Gamboa-Rosales H; Velasco-Elizondo P; Cárdenas-Vargas R
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29160799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Study of Feature Selection Approaches for Human Activity Recognition Using Multimodal Sensory Data.
    Amjad F; Khan MH; Nisar MA; Farid MS; Grzegorzek M
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Activity Recognition Combining Inertial Motion Sensors and Electroencephalogram Signals.
    Graña M; Aguilar-Moreno M; De Lope Asiain J; Araquistain IB; Garmendia X
    Int J Neural Syst; 2020 Oct; 30(10):2050053. PubMed ID: 32917105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Incremental Class-Learning Approach with Acoustic Novelty Detection for Acoustic Event Recognition.
    Bayram B; İnce G
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Impact of Sensors and Feature Selection in Smart-Insole-Based Human Activity Recognition.
    D'Arco L; Wang H; Zheng H
    Methods Protoc; 2022 May; 5(3):. PubMed ID: 35736546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Sensor Data Fusion and CNN-LSTM Model for Human Activity Recognition System.
    Zhou H; Zhao Y; Liu Y; Lu S; An X; Liu Q
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Activity Recognition Based on Symbolic Representation Algorithms for Inertial Sensors.
    Sousa Lima W; de Souza Bragança HL; Montero Quispe KG; Pereira Souto EJ
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Learning Models for IMU-Based HAR with Feature Analysis and Data Correction.
    Tseng YH; Wen CY
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature Extraction Methods for Underwater Acoustic Target Recognition of Divers.
    Sun Y; Chen W; Shuai C; Zhang Z; Wang P; Cheng G; Yu W
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Activity Recognition Method Based on FMCW Radar Sensor with Multi-Domain Feature Attention Fusion Network.
    Cao L; Liang S; Zhao Z; Wang D; Fu C; Du K
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.