These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35590815)

  • 21. A comparative study of the SVM and K-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals.
    Palaniappan R; Sundaraj K; Sundaraj S
    BMC Bioinformatics; 2014 Jun; 15():223. PubMed ID: 24970564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved Feature Parameter Extraction from Speech Signals Using Machine Learning Algorithm.
    Abdusalomov AB; Safarov F; Rakhimov M; Turaev B; Whangbo TK
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CSITime: Privacy-preserving human activity recognition using WiFi channel state information.
    Yadav SK; Sai S; Gundewar A; Rathore H; Tiwari K; Pandey HM; Mathur M
    Neural Netw; 2022 Feb; 146():11-21. PubMed ID: 34839089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MBOSS: A Symbolic Representation of Human Activity Recognition Using Mobile Sensors.
    Montero Quispe KG; Sousa Lima W; Macêdo Batista D; Souto E
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition.
    Yen CT; Liao JX; Huang YK
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multimodal Data Fusion of Electromyography and Acoustic Signals for Thai Syllable Recognition.
    Jong NS; de Herrera AGS; Phukpattaranont P
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):1997-2006. PubMed ID: 33108301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-Cost and Device-Free Human Activity Recognition Based on Hierarchical Learning Model.
    Chen J; Huang X; Jiang H; Miao X
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Human Activity Recognition Using Wearable Sensors via a Hybrid Feature Selection Method.
    Fan C; Gao F
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using a Selective Ensemble Support Vector Machine to Fuse Multimodal Features for Human Action Recognition.
    Tang C; Tong A; Zheng A; Peng H; Li W
    Comput Intell Neurosci; 2022; 2022():1877464. PubMed ID: 35047028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ambient intelligence-based multimodal human action recognition for autonomous systems.
    Jain V; Gupta G; Gupta M; Sharma DK; Ghosh U
    ISA Trans; 2023 Jan; 132():94-108. PubMed ID: 36404154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comprehensive ultra-wideband dataset for non-cooperative contextual sensing.
    Bocus MJ; Piechocki R
    Sci Data; 2022 Oct; 9(1):650. PubMed ID: 36273010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Hybrid Deep Learning Model for Human Activity Recognition Based on Transitional Activities.
    Irfan S; Anjum N; Masood N; Khattak AS; Ramzan N
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Group Decision Making-Based Fusion for Human Activity Recognition in Body Sensor Networks.
    Tian Y; Zhang J; Chen Q; Hou S; Xiao L
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple Participants' Discrete Activity Recognition in a Well-Controlled Environment Using Universal Software Radio Peripheral Wireless Sensing.
    Saeed U; Yaseen Shah S; Aziz Shah S; Liu H; Alhumaidi Alotaibi A; Althobaiti T; Ramzan N; Ullah Jan S; Ahmad J; Abbasi QH
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.