These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35590845)

  • 1. Effects of Fe Staple-Fiber Spun-Yarns and Correlation Models on Textile Pressure Sensors.
    Choi M; Vu CC; Kim J
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Customizable Textile Sensors Based on Helical Core-Spun Yarns for Seamless Smart Garments.
    Wang L; Tian M; Qi X; Sun X; Xu T; Liu X; Zhu S; Zhang X; Qu L
    Langmuir; 2021 Mar; 37(10):3122-3129. PubMed ID: 33682406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Evaluation of Knitted and Stitched Textile Strain Sensors.
    Jansen KMB
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of yarn structure on wicking and its impact on bloodstain pattern analysis (BPA) on woven cotton fabrics.
    Li X; Li J; Michielsen S
    Forensic Sci Int; 2017 Jul; 276():41-50. PubMed ID: 28499150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
    Andrew TL; Zhang L; Cheng N; Baima M; Kim JJ; Allison L; Hoxie S
    Acc Chem Res; 2018 Apr; 51(4):850-859. PubMed ID: 29521501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive Quantitative Evaluation of Yarns and Fabrics and Determination of Contact Area of Fabrics Using the X-ray Microcomputed Tomography System for Skin-Textile Friction Analysis.
    Baby R; Mathur K; DenHartog E
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4652-4664. PubMed ID: 33428371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ag NW-Embedded Coaxial Nanofiber-Coated Yarns with High Stretchability and Sensitivity for Wearable Multi-Sensing Textiles.
    Dai Y; Qi K; Ou K; Song Y; Zhou Y; Zhou M; Song H; He J; Wang H; Wang R
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):11244-11258. PubMed ID: 36791272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Study on Highly Effective Electromagnetic Wave Shield Textile Shell Fabrics Made of Point Polyester/Metallic Core-Spun Yarns.
    Huang CH; Hsu PW; Ke ZW; Lin JH; Shiu BC; Lou CW; Lin JH
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature-Pressure Sensing.
    Wu R; Ma L; Hou C; Meng Z; Guo W; Yu W; Yu R; Hu F; Liu XY
    Small; 2019 Aug; 15(31):e1901558. PubMed ID: 31116907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Textile-Only Capacitive Sensors with a Lockstitch Structure for Facile Integration in Any Areas of a Fabric.
    Zhang Q; Wang YL; Xia Y; Kirk TV; Chen XD
    ACS Sens; 2020 Jun; 5(6):1535-1540. PubMed ID: 32515186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications.
    Aghaei-Ghareh-Bolagh B; Mithieux SM; Hiob MA; Wang Y; Chong A; Weiss AS
    Acta Biomater; 2019 Jun; 91():112-122. PubMed ID: 31004842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and Characterization of Wrapped Metal Yarns-based Fabric Temperature Sensors.
    Yang Q; Wang X; Ding X; Li Q
    Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31547614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3DKnITS: Three-dimensional Digital Knitting of Intelligent Textile Sensor for Activity Recognition and Biomechanical Monitoring.
    Wicaksono I; Hwang PG; Droubi S; Wu FX; Serio AN; Yan W; Paradiso JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2403-2409. PubMed ID: 36086308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Directional Spacer-Knitted Piezoresistant Strain and Pressure Sensor for Electronic Integration and On-Body Applications.
    Jiang M; Hu H; Jin C; Lv R; Guo J; Jiang S; Bai Z
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):55009-55021. PubMed ID: 37922204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Modeller of Textile Yarns at Fibre Level.
    Aychilie DB; Kyosev Y; Abtew MA
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Textile-based weft knitted strain sensors: effect of fabric parameters on sensor properties.
    Atalay O; Kennon WR; Husain MD
    Sensors (Basel); 2013 Aug; 13(8):11114-27. PubMed ID: 23966199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defined UV protection by apparel textiles.
    Hoffmann K; Laperre J; Avermaete A; Altmeyer P; Gambichler T
    Arch Dermatol; 2001 Aug; 137(8):1089-94. PubMed ID: 11493104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromechanical Properties of Silver-Plated Yarns and Their Relation to Yarn Construction Parameters.
    Mersch J; Winger H; Altinsoy E; Cherif C
    Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characteristic study of woven fabrics for intelligent diapers.
    Lou CW; Shiu BC; Lin JH; Chang YJ
    Technol Health Care; 2015; 23(5):675-84. PubMed ID: 26410129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfiber Release to Water, Via Laundering, and to Air, via Everyday Use: A Comparison between Polyester Clothing with Differing Textile Parameters.
    De Falco F; Cocca M; Avella M; Thompson RC
    Environ Sci Technol; 2020 Mar; 54(6):3288-3296. PubMed ID: 32101431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.