These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35590850)
1. Time-of-Flight Imaging in Fog Using Polarization Phasor Imaging. Zhang Y; Wang X; Zhao Y; Fang Y Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590850 [TBL] [Abstract][Full Text] [Related]
2. Depth from phasor distortions in fog. Muraji T; Tanaka K; Funatomi T; Mukaigawa Y Opt Express; 2019 Jun; 27(13):18858-18868. PubMed ID: 31252821 [TBL] [Abstract][Full Text] [Related]
3. Active imaging through dense fog by utilizing the joint polarization defogging and denoising optimization based on range-gated detection. Huang F; Qiu S; Liu H; Liu Y; Wang P Opt Express; 2023 Jul; 31(16):25527-25544. PubMed ID: 37710437 [TBL] [Abstract][Full Text] [Related]
4. Bispectral phasor imaging using continuous-wave time-of-flight camera for scattering-scene depth recovery. Zhang Y; Wang X; Zhao Y; Fang Y; Su B Opt Express; 2022 Jul; 30(15):27346-27365. PubMed ID: 36236908 [TBL] [Abstract][Full Text] [Related]
5. Defogging Algorithm Based on Polarization Characteristics and Atmospheric Transmission Model. Ling F; Zhang Y; Shi Z; Zhang J; Zhang Y; Zhang Y Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365829 [TBL] [Abstract][Full Text] [Related]
6. IDOD-YOLOV7: Image-Dehazing YOLOV7 for Object Detection in Low-Light Foggy Traffic Environments. Qiu Y; Lu Y; Wang Y; Jiang H Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772388 [TBL] [Abstract][Full Text] [Related]
8. Single Image Defogging Based on Illumination Decomposition for Visual Maritime Surveillance. Hu HM; Guo Q; Zheng J; Wang H; Li B IEEE Trans Image Process; 2019 Jan; ():. PubMed ID: 30629503 [TBL] [Abstract][Full Text] [Related]
9. Polarization-based approach for multipath interference mitigation in time-of-flight imaging. Zhao Y; Wang X; Zhang Y; Fang Y; Su B Appl Opt; 2022 Aug; 61(24):7206-7217. PubMed ID: 36256341 [TBL] [Abstract][Full Text] [Related]
10. Referenceless Prediction of Perceptual Fog Density and Perceptual Image Defogging. Choi LK; You J; Bovik AC IEEE Trans Image Process; 2015 Nov; 24(11):3888-901. PubMed ID: 26186784 [TBL] [Abstract][Full Text] [Related]
11. Fog Density Estimation and Image Defogging Based on Surrogate Modeling for Optical Depth. Yutong Jiang ; Changming Sun ; Yu Zhao ; Li Yang IEEE Trans Image Process; 2017 Jul; 26(7):3397-3409. PubMed ID: 28475053 [TBL] [Abstract][Full Text] [Related]
12. A Foggy Weather Simulation Algorithm for Traffic Image Synthesis Based on Monocular Depth Estimation. Tang M; Zhao Z; Qiu J Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544229 [TBL] [Abstract][Full Text] [Related]
13. Research on Driving Obstacle Detection Technology in Foggy Weather Based on GCANet and Feature Fusion Training. Liu Z; Zhao S; Wang X Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905026 [TBL] [Abstract][Full Text] [Related]
14. 3D Object Detection with SLS-Fusion Network in Foggy Weather Conditions. Mai NAM; Duthon P; Khoudour L; Crouzil A; Velastin SA Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695925 [TBL] [Abstract][Full Text] [Related]
15. 3D object detection through fog and occlusion: passive integral imaging vs active (LiDAR) sensing. Usmani K; O'Connor T; Wani P; Javidi B Opt Express; 2023 Jan; 31(1):479-491. PubMed ID: 36606982 [TBL] [Abstract][Full Text] [Related]