These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35590860)

  • 1. Standoff Detection and Identification of Liquid Chemicals on a Reflective Substrate Using a Wavelength-Tunable Quantum Cascade Laser.
    Park S; Son J; Yu J; Lee J
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser.
    Karpf A; Rao GN
    Appl Opt; 2009 Jan; 48(2):408-13. PubMed ID: 19137055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standoff Detection of Oil and Powder Mixtures at 12 Meters Using a Tunable Quantum Cascade Laser-Based System with a Close Focus Telescope and Uncooled Infrared Detector.
    Carter JC; Paul PH; Ottaway JM; Haugen P; Manuel AM
    Appl Spectrosc; 2022 Jan; 76(1):19-27. PubMed ID: 34965744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standoff Mechanical Resonance Spectroscopy Based on Infrared-Sensitive Hydrogel Microcantilevers.
    Chae I; Khan MF; Song J; Kang T; Lee J; Thundat T
    Anal Chem; 2016 Oct; 88(19):9678-9684. PubMed ID: 27599117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm.
    Witinski MF; Blanchard R; Pfluegl C; Diehl L; Li B; Krishnamurthy K; Pein BC; Azimi M; Chen P; Ulu G; Vander Rhodes G; Howle CR; Lee L; Clewes RJ; Williams B; Vakhshoori D
    Opt Express; 2018 Apr; 26(9):12159-12168. PubMed ID: 29716130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standoff chemical plume detection in turbulent atmospheric conditions with a swept-wavelength external cavity quantum cascade laser.
    Phillips MC; Bernacki BE; Harilal SS; Yeak J; Jones RJ
    Opt Express; 2020 Mar; 28(5):7408-7424. PubMed ID: 32225970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standoff spectroscopy of surface adsorbed chemicals.
    Van Neste CW; Senesac LR; Thundat T
    Anal Chem; 2009 Mar; 81(5):1952-6. PubMed ID: 19186935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers.
    Kilgus J; Duswald K; Langer G; Brandstetter M
    Appl Spectrosc; 2018 Apr; 72(4):634-642. PubMed ID: 29164925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.
    Galán-Freyle NJ; Pacheco-Londoño LC; Román-Ospino AD; Hernandez-Rivera SP
    Appl Spectrosc; 2016 Sep; 70(9):1511-9. PubMed ID: 27558366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standoff pump-probe photothermal detection of hazardous chemicals.
    Sharma RC; Kumar S; Parmar A; Mann M; Prakash S; Thakur SN
    Sci Rep; 2020 Sep; 10(1):15053. PubMed ID: 32929139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Compact Mid-Infrared Spectroscopy System for Healthcare Applications Based on a Wavelength-Swept, Pulsed Quantum Cascade Laser.
    Koyama T; Shibata N; Kino S; Sugiyama A; Akikusa N; Matsuura Y
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32570744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral Considerations for Standoff Infrared Detection of RDX on Reflective Aluminum.
    Major KJ; Sanghera JS; Farrell ME; Holthoff E; Pellegrino PM; Ewing KJ
    Appl Spectrosc; 2022 Feb; 76(2):163-172. PubMed ID: 34643139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum cascade laser based standoff photoacoustic chemical detection.
    Chen X; Cheng L; Guo D; Kostov Y; Choa FS
    Opt Express; 2011 Oct; 19(21):20251-7. PubMed ID: 21997036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innovative Substrate-Integrated Hollow Waveguide Coupled Attenuated Total Reflection Sensors for Quantum Cascade Laser Based Infrared Spectroscopy in Harsh Environments.
    Teuber A; Stach R; Haas J; Mizaikoff B
    Appl Spectrosc; 2022 Jan; 76(1):132-140. PubMed ID: 34890273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarimetric Balanced Detection: Background-Free Mid-IR Evanescent Field Laser Spectroscopy for Low-Noise, Long-term Stable Chemical Sensing.
    Freitag S; Baer M; Buntzoll L; Ramer G; Schwaighofer A; Schmauss B; Lendl B
    ACS Sens; 2021 Jan; 6(1):35-42. PubMed ID: 33372759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standoff detection of explosive substances at distances of up to 150 m.
    Mukherjee A; Von der Porten S; Patel CK
    Appl Opt; 2010 Apr; 49(11):2072-8. PubMed ID: 20390007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-parts-per-billion level detection of dimethyl methyl phosphonate (DMMP) by quantum cascade laser photoacoustic spectroscopy.
    Mukherjee A; Dunayevskiy I; Prasanna M; Go R; Tsekoun A; Wang X; Fan J; Patel CK
    Appl Opt; 2008 Apr; 47(10):1543-8. PubMed ID: 18382583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers.
    Lu F; Belkin MA
    Opt Express; 2011 Oct; 19(21):19942-7. PubMed ID: 21997003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced nanoplasmonic heating in standoff sensing of explosive residues with infrared reflection-absorption spectroscopy.
    Simin N; Park Y; Lee D; Thundat T; Kim S
    Opt Lett; 2020 Apr; 45(8):2144-2147. PubMed ID: 32287177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry.
    Macleod NA; Molero F; Weidmann D
    Opt Express; 2015 Jan; 23(2):912-28. PubMed ID: 25835851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.