These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35590872)

  • 1. Comparison of Infrared Thermography and Other Traditional Techniques to Assess Moisture Content of Wall Specimens.
    Dafico LCM; Barreira E; Almeida RMSF; Carasek H
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Infrared Thermography to Evaluate the Humidification of Lightweight Concrete.
    Barreira E; Almeida RMSF; L Simões M; Rebelo D
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32192072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles.
    Li W; Xu W; Wang H; Wang X
    J Therm Biol; 2016 Jan; 55():14-19. PubMed ID: 26724193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Invasive Cattle Body Temperature Measurement Using Infrared Thermography and Auxiliary Sensors.
    Wang FK; Shih JY; Juan PH; Su YC; Wang YC
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33915906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared thermography for microclimate assessment in agroforestry systems.
    Karvatte N; Miyagi ES; de Oliveira CC; Barreto CD; Mastelaro AP; Bungenstab DJ; Alves FV
    Sci Total Environ; 2020 Aug; 731():139252. PubMed ID: 32413649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal variations on infrared temperature as a thermal comfort indicator for cattle under agroforestry systems.
    Karvatte N; Miyagi ES; Carvalho de Oliveira C; Mastelaro AP; de Aguiar Coelho F; Bayma G; Bungenstab DJ; Alves FV
    J Therm Biol; 2021 Apr; 97():102871. PubMed ID: 33863435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IRT and GPR Techniques for Moisture Detection and Characterisation in Buildings.
    Garrido I; Solla M; Lagüela S; Fernández N
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the body surface temperature of cattle by infrared thermography.
    Salles MS; da Silva SC; Salles FA; Roma LC; El Faro L; Bustos Mac Lean PA; Lins de Oliveira CE; Martello LS
    J Therm Biol; 2016 Dec; 62(Pt A):63-69. PubMed ID: 27839551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared thermography for evaluation of the environmental thermal comfort for livestock.
    Barreto CD; Alves FV; de Oliveira Ramos CEC; de Paula Leite MC; Leite LC; Junior NK
    Int J Biometeorol; 2020 May; 64(5):881-888. PubMed ID: 32152728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of infrared thermography to assess the influence of high environmental temperature on rabbits.
    de Lima V; Piles M; Rafel O; López-Béjar M; Ramón J; Velarde A; Dalmau A
    Res Vet Sci; 2013 Oct; 95(2):802-10. PubMed ID: 23642484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scrotal infrared digital thermography as a predictor of seasonal effects on sperm traits in Braford bulls.
    Menegassi SR; Barcellos JO; Dias EA; Koetz C; Pereira GR; Peripolli V; McManus C; Canozzi ME; Lopes FG
    Int J Biometeorol; 2015 Mar; 59(3):357-64. PubMed ID: 24848445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated study for mapping the moisture distribution in an ancient damaged wall painting.
    Capitani D; Proietti N; Gobbino M; Soroldoni L; Casellato U; Valentini M; Rosina E
    Anal Bioanal Chem; 2009 Dec; 395(7):2245-53. PubMed ID: 19838687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of microchip and infrared thermography for monitoring body temperature of beef cattle kept on pasture.
    Giro A; Bernardi ACC; Barioni Junior W; Lemes AP; Botta D; Romanello N; Barreto ADN; Garcia AR
    J Therm Biol; 2019 Aug; 84():121-128. PubMed ID: 31466744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Destructive Possibilities of Thermal Performance Evaluation of the External Walls.
    Nowak H; Nowak Ł
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of fluid bed drying of aqueous granulations.
    Hlinak AJ; Saleki-Gerhardt A
    Pharm Dev Technol; 2000; 5(1):11-7. PubMed ID: 10669913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The uses of infrared thermography to evaluate the effects of climatic variables in bull's reproduction.
    Menegassi SR; Pereira GR; Dias EA; Koetz C; Lopes FG; Bremm C; Pimentel C; Lopes RB; da Rocha MK; Carvalho HR; Barcellos JO
    Int J Biometeorol; 2016 Jan; 60(1):151-7. PubMed ID: 26049285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scrotal infrared digital thermography predicts effects of thermal stress on buffalo (Bubalus bubalis) semen.
    Ahirwar MK; Kataktalware MA; Pushpadass HA; Jeyakumar S; Jash S; Nazar S; Devi G L; Kastelic JP; Ramesha KP
    J Therm Biol; 2018 Dec; 78():51-57. PubMed ID: 30509667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent use of medical infrared thermography in skin neoplasms.
    Magalhaes C; Vardasca R; Mendes J
    Skin Res Technol; 2018 Nov; 24(4):587-591. PubMed ID: 29575378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of infrared thermography and laser speckle contrast imaging for the dynamic assessment of digital microvascular function.
    Pauling JD; Shipley JA; Raper S; Watson ML; Ward SG; Harris ND; McHugh NJ
    Microvasc Res; 2012 Mar; 83(2):162-7. PubMed ID: 21763703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emissivity of Building Materials for Infrared Measurements.
    Barreira E; Almeida RMSF; Simões ML
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.