These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35590873)

  • 21. Moderately reverberant learning ultrasonic pinch panel.
    Nikolovski JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2105-20. PubMed ID: 24081259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing Variable Friction Tactile Display Using an Ultrasonic Travelling Wave.
    Ghenna S; Vezzoli E; Giraud-Audine C; Giraud F; Amberg M; Lemaire-Semail B
    IEEE Trans Haptics; 2017; 10(2):296-301. PubMed ID: 27623597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Vibro-Tactile Perception for Simultaneous Texture Identification, Slip Detection, and Speed Estimation.
    Massalim Y; Kappassov Z; Varol HA
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Non-Touchscreen Tactile Wearable Interface as an Alternative to Touchscreen-Based Wearable Devices.
    Yoon H; Park SH
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32111082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial Intelligence Algorithm-Based Economic Denial of Sustainability Attack Detection Systems: Cloud Computing Environments.
    Aldhyani THH; Alkahtani H
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural-Network-Based Tactile Perception System Using Ultrahigh-Resolution Tactile Sensor.
    Maeda Y; Tanimoto K; Sasayama K; Takao H
    IEEE Trans Haptics; 2023; 16(4):504-510. PubMed ID: 37097796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
    Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z
    Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Classification of red blood cell aggregation using empirical wavelet transform analysis of ultrasonic radiofrequency echo signals.
    Liao Z; Zhang Y; Li Z; He B; Lang X; Liang H; Chen J
    Ultrasonics; 2021 Jul; 114():106419. PubMed ID: 33740499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning at the interface of structural health monitoring and non-destructive evaluation.
    Gardner P; Fuentes R; Dervilis N; Mineo C; Pierce SG; Cross EJ; Worden K
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2182):20190581. PubMed ID: 32921237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards Interpretable Machine Learning for Automated Damage Detection Based on Ultrasonic Guided Waves.
    Schnur C; Goodarzi P; Lugovtsova Y; Bulling J; Prager J; Tschöke K; Moll J; Schütze A; Schneider T
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization-Based Wearable Tactile Rendering.
    Perez AG; Lobo D; Chinello F; Cirio G; Malvezzi M; Martin JS; Prattichizzo D; Otaduy MA
    IEEE Trans Haptics; 2017; 10(2):254-264. PubMed ID: 27775909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks.
    Premoli M; Baggi D; Bianchetti M; Gnutti A; Bondaschi M; Mastinu A; Migliorati P; Signoroni A; Leonardi R; Memo M; Bonini SA
    PLoS One; 2021; 16(1):e0244636. PubMed ID: 33465075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Psychophysical Evaluation of Change in Friction on an Ultrasonically-Actuated Touchscreen.
    Saleem MK; Yilmaz C; Basdogan C
    IEEE Trans Haptics; 2018; 11(4):599-610. PubMed ID: 29994033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lamb Wave Multitouch Ultrasonic Touchscreen.
    Firouzi K; Nikoozadeh A; Carver TE; Khuri-Yakub BP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2174-2186. PubMed ID: 27913331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Harnessing tactile waves to measure skin-to-skin interactions.
    Kirsch LP; Job XE; Auvray M; Hayward V
    Behav Res Methods; 2021 Aug; 53(4):1469-1477. PubMed ID: 33205350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resolution enhancement of tongue tactile image based on deconvolution neural network.
    Liu J; Yu S; Zhao X; Sun X; Meng Q; Liu S; Xu Y; Lv C; Li J
    J Texture Stud; 2023 Aug; 54(4):456-469. PubMed ID: 37224845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HumTouch: Localization of Touch on Semi-Conductive Surfaces by Sensing Human Body Antenna Signal.
    Hsia TH; Okamoto S; Akiyama Y; Yamada Y
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasonic Defect Characterization Using the Scattering Matrix: A Performance Comparison Study of Bayesian Inversion and Machine Learning Schemas.
    Bai L; Le Bourdais F; Miorelli R; Calmon P; Velichko A; Drinkwater BW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3143-3155. PubMed ID: 34048342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Tactile Method for Rice Plant Recognition Based on Machine Learning.
    Chen X; Mao Y; Ma X; Qi L
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32916874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Afferent motor feedback determines the perceived location of tactile stimuli in the external space presented to the moving arm.
    Maij F; Wing AM; Medendorp WP
    J Neurophysiol; 2017 Jul; 118(1):187-193. PubMed ID: 28356475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.