BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35590889)

  • 1. Heart Rate Variability-Based Subjective Physical Fatigue Assessment.
    Ni Z; Sun F; Li Y
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue Evaluation through Machine Learning and a Global Fatigue Descriptor.
    Ramos G; Vaz JR; Mendonça GV; Pezarat-Correia P; Rodrigues J; Alfaras M; Gamboa H
    J Healthc Eng; 2020; 2020():6484129. PubMed ID: 31998469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol.
    Byun S; Kim AY; Jang EH; Kim S; Choi KW; Yu HY; Jeon HJ
    Comput Biol Med; 2019 Sep; 112():103381. PubMed ID: 31404718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pain Recognition With Electrocardiographic Features in Postoperative Patients: Method Validation Study.
    Kasaeyan Naeini E; Subramanian A; Calderon MD; Zheng K; Dutt N; Liljeberg P; Salantera S; Nelson AM; Rahmani AM
    J Med Internet Res; 2021 May; 23(5):e25079. PubMed ID: 34047710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Heart rate variability and physical exercise. Current status].
    Hottenrott K; Hoos O; Esperer HD
    Herz; 2006 Sep; 31(6):544-52. PubMed ID: 17036185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropy analysis of heart rate variability and its application to recognize major depressive disorder: A pilot study.
    Byun S; Kim AY; Jang EH; Kim S; Choi KW; Yu HY; Jeon HJ
    Technol Health Care; 2019; 27(S1):407-424. PubMed ID: 31045557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalisable machine learning models trained on heart rate variability data to predict mental fatigue.
    Matuz A; van der Linden D; Darnai G; Csathó Á
    Sci Rep; 2022 Nov; 12(1):20023. PubMed ID: 36414673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information fusion and multi-classifier system for miner fatigue recognition in plateau environments based on electrocardiography and electromyography signals.
    Chen S; Xu K; Yao X; Ge J; Li L; Zhu S; Li Z
    Comput Methods Programs Biomed; 2021 Nov; 211():106451. PubMed ID: 34644668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Approach for Fatigue Estimation in Sit-to-Stand Exercise.
    Aguirre A; Pinto MJ; Cifuentes CA; Perdomo O; Díaz CAR; Múnera M
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THE EFFECTS OF NON-FUNCTIONAL OVERREACHING AND OVERTRAINING ON AUTONOMIC NERVOUS SYSTEM FUNCTION IN HIGHLY TRAINED ATHLETES.
    Kajaia T; Maskhulia L; Chelidze K; Akhalkatsi V; Kakhabrishvili Z
    Georgian Med News; 2017 Mar; (264):97-103. PubMed ID: 28480859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal.
    Asl BM; Setarehdan SK; Mohebbi M
    Artif Intell Med; 2008 Sep; 44(1):51-64. PubMed ID: 18585905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ECG Multi-Emotion Recognition Based on Heart Rate Variability Signal Features Mining.
    Wang L; Hao J; Zhou TH
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Inattention in Construction Workers Caused by Physical Fatigue Using Electrocardiograph (ECG) and Galvanic Skin Response (GSR) Sensors.
    Ouyang Y; Liu M; Cheng C; Yang Y; He S; Zheng L
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Data-Driven Approach to Physical Fatigue Management Using Wearable Sensors to Classify Four Diagnostic Fatigue States.
    Pinto-Bernal MJ; Cifuentes CA; Perdomo O; Rincón-Roncancio M; Múnera M
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of heart rate variability and salivary cortisol for stress response identification based on adverse childhood experience.
    Aimie-Salleh N; Malarvili MB; Whittaker AC
    Med Biol Eng Comput; 2019 Jun; 57(6):1229-1245. PubMed ID: 30734153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features.
    Jovic A; Bogunovic N
    Artif Intell Med; 2011 Mar; 51(3):175-86. PubMed ID: 20980134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals.
    Ebrahimi F; Setarehdan SK; Ayala-Moyeda J; Nazeran H
    Comput Methods Programs Biomed; 2013 Oct; 112(1):47-57. PubMed ID: 23895941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart rate variability analysis using a ballistocardiogram during Valsalva manoeuvre and post exercise.
    Shin JH; Hwang SH; Chang MH; Park KS
    Physiol Meas; 2011 Aug; 32(8):1239-64. PubMed ID: 21743126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning.
    Oh J; Cho D; Park J; Na SH; Kim J; Heo J; Shin CS; Kim JJ; Park JY; Lee B
    Physiol Meas; 2018 Mar; 39(3):035004. PubMed ID: 29376502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of exercise fatigue levels by multi-class SVM from ECG and HRV.
    Chen Y; Ge H; Su X; Ma X
    Med Biol Eng Comput; 2024 May; ():. PubMed ID: 38705958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.