BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35590968)

  • 21. Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography.
    Liu X; Kang JU
    Opt Express; 2010 Oct; 18(21):22010-9. PubMed ID: 20941102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fiber-based photoacoustic remote sensing microscopy and spectral-domain optical coherence tomography with a dual-function 1050-nm interrogation source.
    Martell M; Haven NJ; Zemp R
    J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34164968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust wavenumber and dispersion calibration for Fourier-domain optical coherence tomography.
    Uribe-Patarroyo N; Kassani SH; Villiger M; Bouma BE
    Opt Express; 2018 Apr; 26(7):9081-9094. PubMed ID: 29715866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography.
    Zhang N; Huo T; Wang C; Chen T; Zheng JG; Xue P
    Opt Lett; 2012 Aug; 37(15):3075-7. PubMed ID: 22859090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].
    Li YY; Fang YH; Li DC; Liu Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):841-5. PubMed ID: 26117908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit.
    Watanabe Y; Itagaki T
    J Biomed Opt; 2009; 14(6):060506. PubMed ID: 20059237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wavelength-Filter Based Spectral Calibrated Wave number - Linearization in 1.3 mm Spectral Domain Optical Coherence.
    Wijeisnghe RE; Cho NH; Park K; Shin Y; Kim J
    Int J Eng Adv Technol; 2013 Dec; 3(2):336-340. PubMed ID: 25688338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band.
    Yamanaka M; Hayakawa N; Nishizawa N
    J Biomed Opt; 2019 Jul; 24(7):1-4. PubMed ID: 31364330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of an amplified piezoelectric actuator for multiple-reference optical coherence tomography.
    O'Gorman S; Neuhaus K; Alexandrov S; Hogan J; Wilson C; McNamara P; Leahy M
    Appl Opt; 2018 Aug; 57(22):E142-E146. PubMed ID: 30117912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Submicrosecond speed optical coherence tomography system design and analysis by use of acousto-optics.
    Riza NA; Yaqoob Z
    Appl Opt; 2003 Jun; 42(16):3018-26. PubMed ID: 12790453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography.
    Povazay B; Hofer B; Torti C; Hermann B; Tumlinson AR; Esmaeelpour M; Egan CA; Bird AC; Drexler W
    Opt Express; 2009 Mar; 17(5):4134-50. PubMed ID: 19259251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography.
    Elmaanaoui B; Wang B; Dwelle JC; McElroy AB; Liu SS; Rylander HG; Milner TE
    Opt Express; 2011 May; 19(11):10252-68. PubMed ID: 21643283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micrometer axial resolution OCT for corneal imaging.
    Yadav R; Lee KS; Rolland JP; Zavislan JM; Aquavella JV; Yoon G
    Biomed Opt Express; 2011 Nov; 2(11):3037-46. PubMed ID: 22076265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 microm.
    Lee SW; Jeong HW; Kim BM
    J Biomed Opt; 2010; 15(1):010501. PubMed ID: 20210417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polarization-sensitive spectral-domain optical coherence tomography using a multi-line single camera spectrometer.
    Song C; Ahn M; Gweon D
    Opt Express; 2010 Nov; 18(23):23805-17. PubMed ID: 21164725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design method for a small F-number two-material uniform dispersion immersion grating imaging spectrometer.
    Liu Y; Li J; Zhang P; Zhou A; Wang X; Wang J; Li B; Lin G; Gu G; Li H
    Opt Express; 2023 Oct; 31(21):35054-35067. PubMed ID: 37859246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal signal processing of nonlinearity in swept-source and spectral-domain optical coherence tomography.
    Vergnole S; Lévesque D; Bizheva K; Lamouche G
    Appl Opt; 2012 Apr; 51(11):1701-8. PubMed ID: 22505160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectral domain optical coherence tomography: a better OCT imaging strategy.
    Yaqoob Z; Wu J; Yang C
    Biotechniques; 2005 Dec; 39(6 Suppl):S6-13. PubMed ID: 20158503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compact Er:Yb:glass-laser-based supercontinuum source for high-resolution optical coherence tomography.
    Stumpf MC; Zeller SC; Schlatter A; Okuno T; Südmeyer T; Keller U
    Opt Express; 2008 Jul; 16(14):10572-9. PubMed ID: 18607472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging.
    Zhu D; Shen M; Jiang H; Li M; Wang MR; Wang Y; Ge L; Qu J; Wang J
    J Biomed Opt; 2011 Dec; 16(12):126006. PubMed ID: 22191923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.