BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35590986)

  • 1. Posture Estimation Using Surface Electromyography during Wheelchair Hand-Rim Operations.
    Ohashi S; Shionoya A; Harada K; Nagamori M; Uchiyama H
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical analysis of wheelchair propulsion for various seating positions.
    Mâsse LC; Lamontagne M; O'Riain MD
    J Rehabil Res Dev; 1992; 29(3):12-28. PubMed ID: 1640378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion.
    van der Helm FC; Veeger HE
    J Biomech; 1996 Jan; 29(1):39-52. PubMed ID: 8839016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of muscle activity during hand rim and lever wheelchair propulsion over flat terrain.
    Błażkiewicz M; Wiszomirska I; Fiok K; Mróz A; Kosmol A; Mikicin M; Molik B; Marszałek J
    Acta Bioeng Biomech; 2019; 21(3):67-74. PubMed ID: 31798014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimanual wheelchair propulsion by people with severe hemiparesis after stroke.
    Smith BW; Bueno DR; Zondervan DK; Montano L; Reinkensmeyer DJ
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):49-62. PubMed ID: 31248296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glenohumeral joint dynamics and shoulder muscle activity during geared manual wheelchair propulsion on carpeted floor in individuals with spinal cord injury.
    Jahanian O; Schnorenberg AJ; Muqeet V; Hsiao-Wecksler ET; Slavens BA
    J Electromyogr Kinesiol; 2022 Feb; 62():102318. PubMed ID: 31178393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface.
    Hughes CJ; Weimar WH; Sheth PN; Brubaker CE
    Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of shoulder load during hand-rim wheelchair start-up with and without power-assisted propulsion in experienced wheelchair users.
    Kloosterman MG; Buurke JH; Schaake L; Van der Woude LH; Rietman JS
    Clin Biomech (Bristol, Avon); 2016 May; 34():1-6. PubMed ID: 26999794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of seat position on wheelchair propulsion biomechanics.
    Kotajarvi BR; Sabick MB; An KN; Zhao KD; Kaufman KR; Basford JR
    J Rehabil Res Dev; 2004 May; 41(3B):403-14. PubMed ID: 15543458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of vertical reaction forces during propulsion of three different one-arm drive wheelchairs by hemiplegic users.
    Mandy A; Redhead L; McCudden C; Michaelis J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):242-7. PubMed ID: 23527873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination patterns of shoulder muscles during level-ground and incline wheelchair propulsion.
    Qi L; Wakeling J; Grange S; Ferguson-Pell M
    J Rehabil Res Dev; 2013; 50(5):651-62. PubMed ID: 24013913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface electromyography activity of trunk muscles during wheelchair propulsion.
    Yang YS; Koontz AM; Triolo RJ; Mercer JL; Boninger ML
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1032-41. PubMed ID: 16979271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion.
    Kloosterman MG; Eising H; Schaake L; Buurke JH; Rietman JS
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):428-35. PubMed ID: 22209484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinetic analysis of trained wheelchair racers during two speeds of propulsion.
    Goosey-Tolfrey VL; Fowler NE; Campbell IG; Iwnicki SD
    Med Eng Phys; 2001 May; 23(4):259-66. PubMed ID: 11427363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
    Lin HT; Su FC; Wu HW; An KN
    Proc Inst Mech Eng H; 2004; 218(4):213-21. PubMed ID: 15376723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wheelchair propulsion biomechanics: implications for wheelchair sports.
    Vanlandewijck Y; Theisen D; Daly D
    Sports Med; 2001; 31(5):339-67. PubMed ID: 11347685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scapular kinematics during manual wheelchair propulsion in able-bodied participants.
    Bekker MJ; Vegter RJK; van der Scheer JW; Hartog J; de Groot S; de Vries W; Arnet U; van der Woude LHV; Veeger DHEJ
    Clin Biomech (Bristol, Avon); 2018 May; 54():54-61. PubMed ID: 29554550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electomyographic activities of shoulder muscles during Handwheelchair.Q vs pushrim wheelchair propulsion.
    Cavallone P; Vieira T; Quaglia G; Gazzoni M
    Med Eng Phys; 2022 Aug; 106():103833. PubMed ID: 35926952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-impact wheelchair propulsion: achievable and acceptable.
    Richter WM; Axelson PW
    J Rehabil Res Dev; 2005; 42(3 Suppl 1):21-33. PubMed ID: 16195960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.