These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35590986)

  • 21. A comparison of glenohumeral joint kinematics and muscle activation during standard and geared manual wheelchair mobility.
    Slavens BA; Jahanian O; Schnorenberg AJ; Hsiao-Wecksler ET
    Med Eng Phys; 2019 Aug; 70():1-8. PubMed ID: 31285137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of two wheelchair hand rim models: contact pressure distribution in straight line and curve trajectories.
    Silva DC; Paschoarelli LC; Medola FO
    Ergonomics; 2019 Dec; 62(12):1563-1571. PubMed ID: 31446854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trunk muscle activity during wheelchair ramp ascent and the influence of a geared wheel on the demands of postural control.
    Howarth SJ; Polgar JM; Dickerson CR; Callaghan JP
    Arch Phys Med Rehabil; 2010 Mar; 91(3):436-42. PubMed ID: 20298836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill.
    Vegter RJ; Lamoth CJ; de Groot S; Veeger DH; van der Woude LH
    J Neuroeng Rehabil; 2013 Jan; 10():9. PubMed ID: 23360756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wrist kinematic characterization of wheelchair propulsion in various seating positions: implication to wrist pain.
    Wei SH; Huang S; Jiang CJ; Chiu JC
    Clin Biomech (Bristol, Avon); 2003 Jul; 18(6):S46-52. PubMed ID: 12828914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of reverse manual wheelchair propulsion on shoulder kinematics, kinetics and muscular activity in persons with paraplegia.
    Haubert LL; Mulroy SJ; Requejo PS; Maneekobkunwong S; Gronley JK; Rankin JW; Rodriguez D; Hong K
    J Spinal Cord Med; 2020 Sep; 43(5):594-606. PubMed ID: 30768378
    [No Abstract]   [Full Text] [Related]  

  • 28. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment.
    le Rütte TA; Trigo F; Bessems L; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2022 Mar; 19(1):30. PubMed ID: 35300710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR; Sisto SA; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of fore-aft seat position on shoulder demands during wheelchair propulsion: part 2. An electromyographic analysis.
    Gutierrez DD; Mulroy SJ; Newsam CJ; Gronley JK; Perry J
    J Spinal Cord Med; 2005; 28(3):222-9. PubMed ID: 16048140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Load on the shoulder in low intensity wheelchair propulsion.
    Veeger HE; Rozendaal LA; van der Helm FC
    Clin Biomech (Bristol, Avon); 2002 Mar; 17(3):211-8. PubMed ID: 11937259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Patterns of shoulder muscle coordination vary between wheelchair propulsion techniques.
    Qi L; Wakeling J; Grange S; Ferguson-Pell M
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):559-66. PubMed ID: 23797282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the shoulder net joint moment during manual wheelchair propulsion using four functional axes.
    Russell IM; Wagner EV; Requejo PS; Mulroy S; Flashner H; McNitt-Gray JL
    J Electromyogr Kinesiol; 2022 Feb; 62():102340. PubMed ID: 31387793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-term adaptations in co-ordination during the initial phase of learning manual wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    J Electromyogr Kinesiol; 2003 Jun; 13(3):217-28. PubMed ID: 12706602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A preliminary muscle activity analysis: Handle based and push-rim wheelchair propulsion.
    Babu Rajendra Kurup N; Puchinger M; Gfoehler M
    J Biomech; 2019 May; 89():119-122. PubMed ID: 31053474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wheelchair pushing and turning: lumbar spine and shoulder loads and recommended limits.
    Weston EB; Khan SN; Marras WS
    Ergonomics; 2017 Dec; 60(12):1754-1765. PubMed ID: 28627334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
    Guo LY; Su FC; Wu HW; An KN
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):106-14. PubMed ID: 12550808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface electromyography activity of upper limb muscle during wheelchair propulsion: Influence of wheelchair configuration.
    Louis N; Gorce P
    Clin Biomech (Bristol, Avon); 2010 Nov; 25(9):879-85. PubMed ID: 20846767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of seat position on manual wheelchair propulsion biomechanics: a quasi-static model-based approach.
    Richter WM
    Med Eng Phys; 2001 Dec; 23(10):707-12. PubMed ID: 11801412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.