These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35591047)

  • 1. Concordance of Computed Tomography Regional Body Composition Analysis Using a Fully Automated Open-Source Neural Network versus a Reference Semi-Automated Program with Manual Correction.
    Gomez-Perez SL; Zhang Y; Byrne C; Wakefield C; Geesey T; Sclamberg J; Peterson S
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of skeletal muscle and adipose tissue measurements using a fully automated body composition analysis neural network versus a semi-automatic reference program with human correction in patients with lung cancer.
    Byrne CA; Zhang Y; Fantuzzi G; Geesey T; Shah P; Gomez SL
    Heliyon; 2022 Dec; 8(12):e12536. PubMed ID: 36619471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body composition from single versus multi-slice abdominal computed tomography: Concordance and associations with colorectal cancer survival.
    Anyene I; Caan B; Williams GR; Popuri K; Lenchik L; Giri S; Chow V; Beg MF; Cespedes Feliciano EM
    J Cachexia Sarcopenia Muscle; 2022 Dec; 13(6):2974-2984. PubMed ID: 36052755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of an automated segmentation method for body composition analysis in colorectal cancer patients using diagnostic abdominal computed tomography images.
    Querido NR; Bours MJL; Brecheisen R; Valkenburg-van Iersel L; Breukink SO; Janssen-Heijnen MLG; Keulen ETP; Konsten JLM; de Vos-Geelen J; Weijenberg MP; Simons CCJM
    Clin Nutr ESPEN; 2024 Oct; 63():659-667. PubMed ID: 39098602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical evaluation of automated segmentation for body composition analysis on abdominal L3 CT slices in polytrauma patients.
    Ackermans LLGC; Volmer L; Timmermans QMMA; Brecheisen R; Damink SMWO; Dekker A; Loeffen D; Poeze M; Blokhuis TJ; Wee L; Ten Bosch JA
    Injury; 2022 Nov; 53 Suppl 3():S30-S41. PubMed ID: 35680433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Automated Segmentation of Connective Tissue Compartments for CT-Based Body Composition Analysis: A Deep Learning Approach.
    Nowak S; Faron A; Luetkens JA; Geißler HL; Praktiknjo M; Block W; Thomas D; Sprinkart AM
    Invest Radiol; 2020 Jun; 55(6):357-366. PubMed ID: 32369318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of Acquisition Parameters for Adipose Tissue Segmentation on CT Images.
    Troschel AS; Troschel FM; Fuchs G; Marquardt JP; Ackman JB; Yang K; Fintelmann FJ
    AJR Am J Roentgenol; 2021 Jul; 217(1):177-185. PubMed ID: 33729886
    [No Abstract]   [Full Text] [Related]  

  • 8. Deep learning method for localization and segmentation of abdominal CT.
    Dabiri S; Popuri K; Ma C; Chow V; Feliciano EMC; Caan BJ; Baracos VE; Beg MF
    Comput Med Imaging Graph; 2020 Oct; 85():101776. PubMed ID: 32862015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External validation of a deep learning model for automatic segmentation of skeletal muscle and adipose tissue on abdominal CT images.
    van Dijk DPJ; Volmer LF; Brecheisen R; Martens B; Dolan RD; Bryce AS; Chang DK; McMillan DC; Stoot JHMB; West MA; Rensen SS; Dekker A; Wee L; Olde Damink SWM;
    Br J Radiol; 2024 Dec; 97(1164):2015-2023. PubMed ID: 39286936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated body composition analysis of clinically acquired computed tomography scans using neural networks.
    Paris MT; Tandon P; Heyland DK; Furberg H; Premji T; Low G; Mourtzakis M
    Clin Nutr; 2020 Oct; 39(10):3049-3055. PubMed ID: 32007318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visceral adiposity and inflammatory bowel disease.
    Rowan CR; McManus J; Boland K; O'Toole A
    Int J Colorectal Dis; 2021 Nov; 36(11):2305-2319. PubMed ID: 34104989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between skeletal muscle and adipose tissue measurements with high-dose CT and low-dose attenuation correction CT of
    Albano D; Camoni L; Rinaldi R; Tucci A; Zilioli VR; Muzi C; Ravanelli M; Farina D; Coppola A; Camalori M; Giubbini R; Bertagna F
    Br J Radiol; 2021 Jul; 94(1123):20200672. PubMed ID: 34106736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated versus manual analysis of body composition measures on computed tomography in patients with bladder cancer.
    Rigiroli F; Zhang D; Molinger J; Wang Y; Chang A; Wischmeyer PE; Inman BA; Gupta RT
    Eur J Radiol; 2022 Sep; 154():110413. PubMed ID: 35732083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a new artificial intelligence-aided method to assess body composition CT segmentation in colorectal cancer patients.
    Cao K; Yeung J; Arafat Y; Qiao J; Gartrell R; Master M; Yeung JMC; Baird PN
    J Med Radiat Sci; 2024 May; ():. PubMed ID: 38777346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of automated computed tomography segmentation to assess body composition and mortality associations in cancer patients.
    Cespedes Feliciano EM; Popuri K; Cobzas D; Baracos VE; Beg MF; Khan AD; Ma C; Chow V; Prado CM; Xiao J; Liu V; Chen WY; Meyerhardt J; Albers KB; Caan BJ
    J Cachexia Sarcopenia Muscle; 2020 Oct; 11(5):1258-1269. PubMed ID: 32314543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of automated assessment for determining associations of low muscle mass and muscle loss with overall survival in patients with colorectal cancer - A validation study.
    Smit KC; Derksen JWG; Kurk SA; Moeskops P; Koopman M; Veldhuis WB; May AM
    Clin Nutr ESPEN; 2024 Oct; 63():572-584. PubMed ID: 38997109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Deep Learning-Based Segmentation of Abdominal Adipose Tissue on Dixon MRI in Adolescents: A Prospective Population-Based Study.
    Wu T; Estrada S; van Gils R; Su R; Jaddoe VWV; Oei EHG; Klein S
    AJR Am J Roentgenol; 2024 Jan; 222(1):e2329570. PubMed ID: 37584508
    [No Abstract]   [Full Text] [Related]  

  • 18. Utility of Fully Automated Body Composition Measures on Pretreatment Abdominal CT for Predicting Survival in Patients With Colorectal Cancer.
    Lee MH; Pickhardt SG; Garrett JW; Perez AA; Zea R; Valle KF; Lubner MG; Bates DDB; Summers RM; Pickhardt PJ
    AJR Am J Roentgenol; 2023 Mar; 220(3):371-380. PubMed ID: 36000663
    [No Abstract]   [Full Text] [Related]  

  • 19. Automated segmentation of five different body tissues on computed tomography using deep learning.
    Pu L; Gezer NS; Ashraf SF; Ocak I; Dresser DE; Dhupar R
    Med Phys; 2023 Jan; 50(1):178-191. PubMed ID: 36008356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. End-to-end automated body composition analyses with integrated quality control for opportunistic assessment of sarcopenia in CT.
    Nowak S; Theis M; Wichtmann BD; Faron A; Froelich MF; Tollens F; Geißler HL; Block W; Luetkens JA; Attenberger UI; Sprinkart AM
    Eur Radiol; 2022 May; 32(5):3142-3151. PubMed ID: 34595539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.